LIPIcs.CCC.2016.11.pdf
- Filesize: 0.55 MB
- 28 pages
We give a polynomial time algorithm to decode multivariate polynomial codes of degree d up to half their minimum distance, when the evaluation points are an arbitrary product set S^m, for every d < |S|. Previously known algorithms could achieve this only if the set S has some very special algebraic structure, or if the degree d is significantly smaller than |S|. We also give a near-linear time algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d < (1-epsilon)|S| for constant epsilon > 0. Our result gives an m-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.
Feedback for Dagstuhl Publishing