Creative Commons Attribution 3.0 Unported license
Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k.
@InProceedings{chimani_et_al:LIPIcs.SoCG.2016.30,
author = {Chimani, Markus and Hlinen\'{y}, Petr},
title = {{Inserting Multiple Edges into a Planar Graph}},
booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)},
pages = {30:1--30:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-009-5},
ISSN = {1868-8969},
year = {2016},
volume = {51},
editor = {Fekete, S\'{a}ndor and Lubiw, Anna},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.30},
URN = {urn:nbn:de:0030-drops-59223},
doi = {10.4230/LIPIcs.SoCG.2016.30},
annote = {Keywords: crossing number, edge insertion, parameterized complexity, path homotopy, funnel algorithm}
}