LIPIcs.SoCG.2016.63.pdf
- Filesize: 495 kB
- 15 pages
The symmetric difference is a robust operator for measuring the error of approximating one shape by another. Given two convex shapes P and C, we study the problem of minimizing the volume of their symmetric difference under all possible scalings and translations of C. We prove that the problem can be solved by convex programming. We also present a combinatorial algorithm for convex polygons in the plane that runs in O((m+n) log^3(m+n)) expected time, where n and m denote the number of vertices of P and C, respectively.
Feedback for Dagstuhl Publishing