LIPIcs.MFCS.2016.63.pdf
- Filesize: 0.56 MB
- 13 pages
We study the exact learnability of real valued graph parameters f which are known to be representable as partition functions which count the number of weighted homomorphisms into a graph H with vertex weights alpha and edge weights beta. M. Freedman, L. Lovasz and A. Schrijver have given a characterization of these graph parameters in terms of the k-connection matrices C(f,k) of f. Our model of learnability is based on D. Angluin's model of exact learning using membership and equivalence queries. Given such a graph parameter f, the learner can ask for the values of f for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices C(f,k) of f. The teacher can accept the hypothesis as correct, or provide a counterexample consisting of a graph. Our main result shows that in this scenario, a very large class of partition functions, the rigid partition functions, can be learned in time polynomial in the size of H and the size of the largest counterexample in the Blum-Shub-Smale model of computation over the reals with unit cost.
Feedback for Dagstuhl Publishing