Learning a Better Motif Index: Toward Automated Motif Extraction

Authors W. Victor H. Yarlott, Mark A. Finlayson



PDF
Thumbnail PDF

File

OASIcs.CMN.2016.7.pdf
  • Filesize: 379 kB
  • 10 pages

Document Identifiers

Author Details

W. Victor H. Yarlott
Mark A. Finlayson

Cite As Get BibTex

W. Victor H. Yarlott and Mark A. Finlayson. Learning a Better Motif Index: Toward Automated Motif Extraction. In 7th Workshop on Computational Models of Narrative (CMN 2016). Open Access Series in Informatics (OASIcs), Volume 53, pp. 7:1-7:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/OASIcs.CMN.2016.7

Abstract

Motifs are distinctive recurring elements found in folklore, and are used by folklorists to categorize and find tales across cultures and track the genetic relationships of tales over time. Motifs have significance beyond folklore as communicative devices found in news, literature, press releases, and propaganda that concisely imply a large constellation of culturally-relevant information. Until now, folklorists have only extracted motifs from narratives manually, and the conceptual structure of motifs has not been formally laid out.  In this short paper we propose that it is possible to automate the extraction of both existing and new motifs from narratives using supervised learning techniques and thereby possible to learn a computational model of how folklorists determine motifs. Automatic extraction would enable the construction of a truly comprehensive motif index, which does not yet exist, as well as the automatic detection of motifs in cultural materials, opening up a new world of narrative information for analysis by anyone interested in narrative and culture. We outline an experimental design, and report on our efforts to produce a structured form of Thompson's motif index, as well as a development annotation of motifs in a small collection of Russian folklore. We propose several initial computational, supervised approaches, and describe several possible metrics of success.  We describe lessons learned and difficulties encountered so far, and outline our plan going forward.

Subject Classification

Keywords
  • Text analysis
  • automated feature extraction
  • folklore
  • narrative
  • Russian folktales

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Antti Amatus Aarne. Verzeichnis der Märchentypen. Suomalainen tiedeakatemia, 1910. Google Scholar
  2. Aleksandr Nikolaevich Afanas'ev. Narodnye Russkie Skazki. Moscow: Gos. Izd-vo Khudozh Lit-ry., 1957. Google Scholar
  3. Nikolaĭ Petrovich Andreev, Antti Aarne, and Heda Jason. Index of Tale-plots According to the System of Aarne. Rand Corporation, 1968. Google Scholar
  4. David M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84, 2012. Google Scholar
  5. Inger Margrethe Boberg. Motif-index of early Icelandic literature. Munksgaard, 1966. Google Scholar
  6. Richard Francis Burton. The Arabian nights. Barnes &Noble, 2009. Google Scholar
  7. Marian Roalfe Cox. Cinderella: Three hundred and Forty-Five Variants of Cinderella, Catskin, and Cap o'Rushes, volume 31. Folklore Society, 1893. Google Scholar
  8. Tom Peete Cross. Motif-index of early Irish literature. Indiana University, 1952. Google Scholar
  9. Sándor Darányi. Examples of Formulaity in Narratives and Scientific Communication. In Proceedings of the First International AMICUS Workshop on Automated Motif Discovery in Cultural Heritage and Scientific Communication Texts, pages 29-35, 2010. URL: http://ilk.uvt.nl/amicus/amicus_ws2010_proceedings.html.
  10. Sándor Darányi and László Forró. Detecting Multiple Motif Co-occurrences in the Aarne-Thompson-Uther Tale Type Catalog: A Preliminary Survey. Anales de Documentación, 15(1), 2012. URL: http://revistas.um.es/analesdoc/article/view/analesdoc.15.1.134691/131801.
  11. Sándor Darányi, Peter Wittek, and László Forró. Toward Sequencing "Narrative DNA": Tale Types, Motif Strings and Memetic Pathways. In Mark A. Finlayson, editor, Third Workshop on Computational Models of Narrative (CMN), pages 2-10, Istanbul, Turkey, 2012. European Language Resources Association (ELRA). Google Scholar
  12. Thierry Declerck and Piroska Lendvai. Linguistic and semantic representation of the thompson’s motif-index of folk-literature. In Research and Advanced Technology for Digital Libraries, pages 151-158. Springer, 2011. Google Scholar
  13. Thierry Declerck, Piroska Lendvai, and Sándor Darányi. Multilingual and Semantic Extension of Folk Tale Categories. In Proceedings of the 2012 Digital Humanities Conference (DH 2012), 2012. URL: http://www.dh2012.uni-hamburg.de/conference/programme/abstracts/multilingual-and-semantic-extension-of-folk-tale-catalogues/.
  14. Alan Dundes. The motif-index and the tale type index: A critique. Journal of Folklore Research, pages 195-202, 1997. Google Scholar
  15. Mark A. Finlayson. The story workbench: An extensible semi-automatic text annotation tool. In Intelligent Narrative Technologies, 2011. Google Scholar
  16. Mark Alan Finlayson. Collecting semantics in the wild: The story workbench. In AAAI Fall Symposium: Naturally-Inspired Artificial Intelligence, pages 46-53, 2008. Google Scholar
  17. Bernhard Fisseni and Faith Lawrence. A Paradigm for Eliciting Story Variation. In Proceedings of the 4th Workshop on Computational Models of Narrative (CMN'13), volume 32, pages 100-105. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. Google Scholar
  18. Norbert Guterman. Russian Fairy Tales. Pantheon Books, 1973. Google Scholar
  19. Jeffry R. Halverson, Steven R. Corman, and H. L. Goodall Jr. Master narratives of Islamist extremism. Palgrave Macmillan, 2011. Google Scholar
  20. Nancy Ide and James Pustejovsky, editors. Handbook of Linguistic Annotation. Springer, 2016. Forthcoming. Google Scholar
  21. Hiroko Ikeda. A type and motif index of Japanese folk-literature. Orient Cultural Service, 1971. Google Scholar
  22. Heda Jason. NP Andreev,'Index of Tale-Plots According to the System of Aarne': A Partial Translation. Rand Corporation, 1968. Google Scholar
  23. Heda Jason. About `motifs',`motives',`motuses',`-etic/s',`-emic/s', and `allo/s-', and how they fit together. an experiment in definitions and in terminology. Fabula, 48(1-2):85-99, 2007. Google Scholar
  24. Daniel Jurafsky and James H. Martin. Speech and Language Processing. Upper Saddle River, NJ: Pearson Prentice Hall, 2009. Google Scholar
  25. FB Karsdorp, P Kranenburg, Theo Meder, Dolf Trieschnigg, and A Bosch. In search of an appropriate abstraction level for motif annotations. In Proceedings of the 2012 Workshop on Computational Models of Narrative, 2012. Google Scholar
  26. Folgert Karsdorp, Marten van der Meulen, Theo Meder, and Antal van den Bosch. Momfer: A search engine of thompson’s motif-index of folk literature. Folklore, 126(1):37-52, 2015. Google Scholar
  27. Bacil F. Kirtley. A motif-index of traditional Polynesian narratives. University of Hawai'i Press, 1971. Google Scholar
  28. Jon D. Mcauliffe and David M. Blei. Supervised topic models. In Advances in neural information processing systems, pages 121-128, 2008. Google Scholar
  29. Nir Ofek, Sándor Darányi, and Lior Rokach. Linking Motif Sequences with Tale Types by Machine Learning. In Mark A. Finlayson, Bernhard Fisseni, Benedikt Löwe, and Jan Christoph Meister, editors, Proceedings of the 4th Workshop on Computational Models of Narrative (CMN'13), volume 32, pages 166-182, Hamburg, Germany, 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: http://dx.doi.org/10.4230/OASIcs.CMN.2013.166.
  30. Vladimir Propp. Morphology of the Folktale, volume 9. University of Texas Press, 1968. Google Scholar
  31. Ruthenia. S. Thompson. Motif-index of folk-literature. http://www.ruthenia.ru/folklore/thompson/. Accessed: 2016-03-09.
  32. Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval. Information processing &management, 24(5):513-523, 1988. Google Scholar
  33. Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1):11-21, 1972. Google Scholar
  34. Stith Thompson. Motif-index of folk-literature: a classification of narrative elements in folktales, ballads, myths, fables, mediaeval romances, exempla, fabliaux, jest-books and local legends, volume 4. Indiana University Press, 1960. Google Scholar
  35. Stith Thompson. The folktale. University of California Press, 1977. Google Scholar
  36. Princeton University. About wordnet, 2010. Retrieved on May 9, 2016 from: http://wordnet.princeton.edu. Google Scholar
  37. Hans-Jörg Uther. The types of international folktales: a classification and bibliography, based on the system of Antti Aarne and Stith Thompson. Suomalainen Tiedeakatemia, Academia Scientiarum Fennica, 2004. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail