ProppML: A Complete Annotation Scheme for Proppian Morphologies

Authors W. Victor H. Yarlott, Mark A. Finlayson



PDF
Thumbnail PDF

File

OASIcs.CMN.2016.8.pdf
  • Filesize: 0.51 MB
  • 19 pages

Document Identifiers

Author Details

W. Victor H. Yarlott
Mark A. Finlayson

Cite AsGet BibTex

W. Victor H. Yarlott and Mark A. Finlayson. ProppML: A Complete Annotation Scheme for Proppian Morphologies. In 7th Workshop on Computational Models of Narrative (CMN 2016). Open Access Series in Informatics (OASIcs), Volume 53, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/OASIcs.CMN.2016.8

Abstract

We give a preliminary description of ProppML, an annotation scheme designed to capture all the components of a Proppian-style morphological analysis of narratives. This work represents the first fully complete annotation scheme for Proppian morphologies, going beyond previous annotation schemes such as PftML, ProppOnto, Bod et al., and our own prior work. Using ProppML we have annotated Propp's morphology on fifteen tales (18,862 words) drawn from his original corpus of Russian folktales. This is a significantly larger set of data than annotated in previous studies. This pilot corpus was constructed via double annotation by two highly trained annotators, whose annotations were then combined after discussion with a third highly trained adjudicator, resulting in gold standard data which is appropriate for training machine learning algorithms. Agreement measures calculated between both annotators show very good agreement (F_1>0.75, kappa>0.9 for functions; F_1>0.6 for moves; and F_1>0.8, kappa>0.6 for dramatis personae). This is the first robust demonstration of reliable annotation of Propp's system.
Keywords
  • Narrative structure
  • Computational folkloristics
  • Russian folktales

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Antti Amatus Aarne. Verzeichnis der märchentypen. Suomalainen tiedeakatemia, 1910. Google Scholar
  2. Aleksandr Nikolaevich Afanas'ev. Narodnye Russkie Skazki. Moscow: Gos. Izd-vo Khudozh Lit-ry., 1957. Google Scholar
  3. María Arinbjarnar. Murder She Programmed: Dynamic Plot Generating Engine for Murder Mystery Games. Thesis, Reykavik University, 2005. URL: http://www-users.cs.york.ac.uk/~maria/greinar/BSc.pdf.
  4. Rens Bod, Bernhard Fisseni, Aadil Kurji, and Benedikt Löwe. Objectivity and Reproducibility of Proppian Narrative Annotations. In Mark Alan Finlayson, editor, Third Workshop on Computational Models of Narrative (CMN), pages 17-21, Istanbul, Turkey, 2012. European Language Resources Association (ELRA). Google Scholar
  5. Claude Bremond, Jean Verrier, Thomas G. Pavel, and Marylin Randall. Afanasiev and propp. Style, pages 177-195, 1984. Google Scholar
  6. Benjamin N. Colby. A Partial Grammar of Eskimo Folktales. American Anthropologist, 75:645-662, 1973. Google Scholar
  7. Thierry Declerck, Kerstin Eckart, Piroska Lendvai, Laurent Romary, and Thomas Zastrow. Towards a standardized linguistic annotation of fairy tales. In Workshop on Language Resource and Language Technology Standards, pages 60-63, 2010. Google Scholar
  8. Alan Dundes. From etic to emic units in the structural study of folktales. The Journal of American Folklore, 75(296):95-105, 1962. Google Scholar
  9. Alan Dundes. The Morphology of North American Indian Folktales. Folklore Fellows Communications, 1964. Google Scholar
  10. Chris R. Fairclough and Pádraig Cunningham. An Interactive Story Engine. In Proceedings of the 13th Irish Conference on Artificial Intelligence and Cognitive Science (AICS 2002), pages 171-176, 2002. Google Scholar
  11. Chris R. Fairclough and Padraig Cunningham. A Multiplayer Case Based Story Engine. In Proceedings of the 4th International Conference on Intelligent Games and Simulation (GAME-ON 2003), pages 41-47. EUROSIS, 2003. URL: https://www.scss.tcd.ie/publications/tech-reports/reports.03/TCD-CS-2003-43.pdf.
  12. Chris R. Fairclough and Pádraig Cunningham. AI Structuralist Storytelling In Computer Games. In Proceedings of the 5th International Conference on Computer Games: Artificial Intelligence, Design and Education (CGAIDE 2004). University of Wolverhampton, 2004. Google Scholar
  13. Mark A Finlayson. Propplearner: Deeply annotating a corpus of russian folktales to enable the machine learning of a russian formalist theory. Digital Scholarship in the Humanities, page fqv067, 2015. Google Scholar
  14. Mark Alan Finlayson. Collecting Semantics in the Wild: The Story Workbench. In Jacob Beal, Paul Bello, Nick Cassimatis, Michael Coen, and Patrick Winston, editors, Proceedings of the AAAI Fall Symposium on Naturally Inspired Artificial Intelligence (published as Technical Report FS-08-06, Papers from the AAAI Fall Symposium), volume 1, pages 46-53, Arlington, VA, 2008. AAAI Press, Menlo Park, CA. URL: http://www.aaai.org/Papers/Symposia/Fall/2008/FS-08-06/FS08-06-008.pdf.
  15. Mark Alan Finlayson. The Story Workbench: An Extensible Semi-Automatic Text Annotation Tool. In Emmett Tomai, Jonathan P. Rowe, and David K. Elson, editors, Proceedings of the 4th Workshop on Intelligent Narrative Technologies (INT4), pages 21-24, Stanford, CA, 2011. AAAI Press, Menlo Park, CA. URL: http://aaai.org/ocs/index.php/AIIDE/AIIDE11WS/paper/view/4091.
  16. Mark Alan Finlayson. Inferring Propp’s Functions from Semantically-Annotated Text. Journal of American Folklore, Special Issue on Computational Folkloristics, 129(511):53-57, 2016. Google Scholar
  17. Mark Alan Finlayson and Tomaz Erjavec. Overview of Annotation Creation: Processes & Tools. In Nancy Ide and James Pustejovsky, editors, Handbook of Linguistic Annotation. Springer, 2016. URL: http://arxiv.org/abs/arXiv:1602.05753.
  18. J. L. L. B. Fischer. The Sociopsychological Analysis of Folktales. Current Anthropology, 4(3):235-295, 1963. URL: http://www.jstor.org/stable/2739608, URL: http://dx.doi.org/10.1086/200639.
  19. Joseph L. Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378, 1971. Google Scholar
  20. William B. Frakes and Ricardo Baeza-Yates. Information retrieval: data structures and algorithms. Prentice Hall PTR, 1992. Google Scholar
  21. Pablo Gervás. Propp’s Morphology of the Folk Tale as a Grammar for Generation. In Mark A. Finlayson, Bernhard Fisseni, Benedikt Löwe, and Jan Christoph Meister, editors, Proceedings of the 4th Workshop on Computational Models of Narrative (CMN'13), volume 32, pages 106-122. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013. URL: http://dx.doi.org/10.4230/OASIcs.CMN.2013.106.
  22. Pablo Gervás, Belén Daíz-Agudo, Federico Peinado, and Raquel Hervás. Story plot generation based on CBR. Knowledge-Based Systems, 18(4-5):235-242, 2005. URL: http://dx.doi.org/10.1016/j.knosys.2004.10.011.
  23. Pablo Gervás, Carlos León, and Gonzalo Méndez. Schemas for Narrative Generation Mined from Existing Descriptions of Plot. In Proceedings of the 6th Workshop on Computational Models of Narrative (CMN'15), pages 54-70, 2015. URL: http://narrative.csail.mit.edu/cmn15/schedule_cmn15.html.
  24. Dieter Grasbon and Norbert Braun. a morphological approach to interactive storytelling. In Proceedings of cast01, Living in Mixed Realities, pages 337-340. FhG - Institut Medienkommunikation (IMK), German Federal Ministry of Education and Research, 2001. URL: http://netzspannung.org/version1/extensions/cast01-proceedings/pdf/by_name/Grasbon.pdf.
  25. A. J. Greimas. Structual Semantics: An Attempt at a Method. University of Nebraska Press, Lincoln, Nebraska, 1983. Google Scholar
  26. Norbert Guterman. Russian Fairy Tales. Pantheon Books, 1973. Google Scholar
  27. Sheldon Klein. Meta-compiling text grammars as a model for human behavior. In Proceedings of the 1975 workshop on Theoretical issues in natural language processing, pages 84-88. Association for Computational Linguistics, 1975. Google Scholar
  28. Sheldon Klein, John F. Aeschlimann, Matthew A. Appelbaum, D. F. Blasiger, Elizabeth J. Curtis, Mark Foster, S. D. Kalish, S. J. Kamin, Y. D. Lee, L. A. Price, et al. Modeling Propp and Lévi-Strauss in a metasymbolic simulation system. Patterns in Oral Literature, pages 141-222, 1977. Google Scholar
  29. Piroska Lendvai, Thierry Declerck, Sándor Darányi, Pablo Gervás, Raquel Hervás, Scott Malec, and Frederico Peinado. Integration of Linguistic Markup into Semantic Models of Folk Narratives: The Fairy Tale Use Case. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC), pages 1996-2001. European Language Resources Association (ELRA), 2010. Google Scholar
  30. Piroska Lendvai, Thierry Declerck, Sándor Darányi, and Scott Malec. Propp revisited: Integration of linguistic markup into structured content descriptors of tales. In Proceedings of the Conference for Digital Humanities 2010, 2010. Google Scholar
  31. Claude Lévi-Strauss. L'analyse morphologique des contes russes. International Journal of Slavic Linguistics and Poetics, 3:122-149, 1960. Google Scholar
  32. Claude Levi-Strauss. Structure and Form: Reflections on a Work by Vladimir Propp. In Vladimir Propp, editor, Theory and History of Folklore, chapter 11, pages 167-210. University of Minnesota Press, Minneapolis, MN, 1984. Google Scholar
  33. Isabel Machado, Ana Paiva, and Paul Brna. Real characters in virtual stories. In Virtual Storytelling Using Virtual Reality Technologies for Storytelling, pages 127-134. Springer, 2001. Google Scholar
  34. Scott Malec. Autopropp: Toward the automatic markup, classification, and annotation of russian magic tales. In Proceedings of the First International AMICUS Workshop on Automated Motif Discovery in Cultural Heritage and Scientific Communication Texts, pages 112-115, 2010. Google Scholar
  35. Scott A. Malec. Proppian structural analysis and xml modeling. Proc. of Computers, Literature and Philology (CLiP 2001), 2001. URL: https://www.researchgate.net/publication/247286265_Proppian_Structural_Analysis_and_XML_Modeling.
  36. Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics (ACL) System Demonstrations, pages 55-60, 2014. URL: http://www.aclweb.org/anthology/P/P14/P14-5010.
  37. Federico Peinado and Pablo Gervás. Creativity Issues in Plot Generation. In Working Notes on Workshop on Computational Creativity, at 19th International Joint Conference on Artificial Intelligence (2nd IJWCC'05), pages 45-52. Departamento de Ingeniera del Software e Inteligencia Artificial, Universidad Complutense de Madrid, 2005. URL: http://www.fdi.ucm.es/profesor/fpeinado/publications/2005-peinado-creativity.pdf.
  38. Federico Peinado, Pablo Gervás, and Belén Díaz-Agudo. A description logic ontology for fairy tale generation. In Language Resources for Linguistic Creativity Workshop, 4th LREC Conference, pages 56-61. Citeseer, 2004. Google Scholar
  39. Vladimir Propp. The Morphology of the Folktale (2nd ed.). University of Texas Press, Austin, TX, 1968. Google Scholar
  40. James Pustejovsky and Amber Stubbs. Natural Language Annotation for Machine Learning: A guide to corpus-building for applications. O'Reilly, Sebastopol, CA, 2013. Google Scholar
  41. Thomas Rieger and Norbert Braun. Narrative use of sign language by a virtual character for the hearing impaired. Computer Graphics Forum, 22(3):651-660, 2003. Google Scholar
  42. Craig Michael Thomas. The Algorithmic Expansion of Stories. Thesis, Queen’s University, 2010. URL: http://hdl.handle.net/1974/6127.
  43. Cornelis Joost van Rijsbergen. Information Retrieval. London: Butterworths, 1979. URL: http://www.dcs.gla.ac.uk/Keith/Preface.html.
  44. Roman M Vólkov. Shazka. Rozyskanija po sjužetosloženiju narodnoj skazki., volume 1. Ukrainian State Publishing House, 1924. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail