LIPIcs.ISAAC.2016.37.pdf
- Filesize: 0.74 MB
- 26 pages
Given two independent sets I and J of a graph G, imagine that a token (coin) is placed on each vertex in I. Then, the Sliding Token problem asks if one could transforms I to J using a sequence of elementary steps, where each step requires sliding a token from one vertex to one of its neighbors, such that the resulting set of vertices where tokens are placed still remains independent. In this paper, we describe a polynomial-time algorithm for solving Sliding Token in case the graph G is a cactus. Our algorithm is designed based on two observations. First, all structures that forbid the existence of a sequence of token slidings between I and J, if exist, can be found in polynomial time. A no-instance may be easily deduced using this characterization. Second, without such forbidden structures, a sequence of token slidings between I and J does exist.
Feedback for Dagstuhl Publishing