LIPIcs.ISAAC.2016.49.pdf
- Filesize: 0.52 MB
- 13 pages
We present an algorithm for the k shortest simple path problem on weighted directed graphs (kSSP) that is based on Eppstein’s algorithm for a similar problem in which paths are allowed to contain cycles. In contrast to most other algorithms for kSSP, ours is not based on Yen's algorithm [Networks, 1971] and does not solve replacement path problems. Its worst-case running time is on par with state-of-the-art algorithms for kSSP. Using our algorithm, one may find O(m) simple paths with a single shortest path tree computation and O(n+m) additional time per path in well-behaved cases, where n is the number of nodes and m is the number of edges. Our computational results show that on random graphs and large road networks, these well-behaved cases are quite common and our algorithm is faster than existing algorithms by an order of magnitude.
Feedback for Dagstuhl Publishing