Finer Separations Between Shallow Arithmetic Circuits

Authors Mrinal Kumar, Ramprasad Saptharishi



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2016.38.pdf
  • Filesize: 0.51 MB
  • 12 pages

Document Identifiers

Author Details

Mrinal Kumar
Ramprasad Saptharishi

Cite As Get BibTex

Mrinal Kumar and Ramprasad Saptharishi. Finer Separations Between Shallow Arithmetic Circuits. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 38:1-38:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016) https://doi.org/10.4230/LIPIcs.FSTTCS.2016.38

Abstract

In this paper, we show that there is a family of polynomials P_n, where P_n is a polynomial in n variables of degree at most d = O(log^2(n)), such that

* P_n can be computed by linear sized homogeneous depth-5 arithmetic circuits,
* P_n can be computed by  poly(n) sized non-homogeneous depth-3 arithmetic circuits.
* Any homogeneous depth-4 arithmetic circuit computing P_n must have size at least n^{Omega(sqrt(d))}.

This shows that the parameters for the depth reduction results of [Agrawal-Vinay 08, Koiran 12, Tavenas 13] are tight for extremely restricted classes of arithmetic circuits, for instance homogeneous depth-5 circuits and non-homogeneous depth-3 circuits, and over an appropriate range of parameters, qualitatively improve a result of [Kumar-Saraf 14], which showed that the parameters of depth reductions are optimal for algebraic branching programs.

As an added advantage, our proofs are much shorter and simpler than the two known proofs of n^{Omega(sqrt(d))} lower bound for homogeneous depth-4 circuits [Kayal-Limaye-Saha-Srinivasan 14, Kumar-Saraf 14], albeit our proofs only work when d = O(log^2(n)).

Subject Classification

Keywords
  • arithmetic circuits
  • lower bounds
  • separations
  • depth reduction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the \ifnumcomp2008<1966 \nth\intcalcSub20081959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2008) \ifnumcomp2008<1975 \nth\intcalcSub20081959 Annual Symposium on Switching and Automata Theory (SWAT 2008) \nth\intcalcSub20081959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pages 67-75, 2008. URL: http://dx.doi.org/10.1109/FOCS.2008.32.
  2. Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds, Determinantal Complexity : A Unified Approach. Proceedings of the \nth\intcalcSub20141983 Symposium on Theoretical Aspects of Computer Science (STACS 2014), 2014. Preliminary version at http://arxiv.org/abs/1308.1640. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2014.239.
  3. Hervé Fournier, Nutan Limaye, Meena Mahajan, and Srikanth Srinivasan. The Shifted Partial Derivative Complexity of Elementary Symmetric Polynomials, pages 324-335. Springer Berlin Heidelberg, 2015. URL: http://dx.doi.org/10.1007/978-3-662-48054-0_27.
  4. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic Circuits: A Chasm at Depth Three. In Proceedings of the \ifnumcomp2013<1966 \nth\intcalcSub20131959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2013) \ifnumcomp2013<1975 \nth\intcalcSub20131959 Annual Symposium on Switching and Automata Theory (SWAT 2013) \nth\intcalcSub20131959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 578-587, 2013. URL: http://dx.doi.org/10.1109/FOCS.2013.68.
  5. Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm at depth four. Journal of the ACM, 61(6):33:1-33:16, 2014. Preliminary version in the \ifnumcomp2013<1996 \nth\intcalcSub20131985 Annual Structure in Complexity Theory Conference (Structures 2013) \ifnumcomp2013<2015 \nth\intcalcSub20131985 Annual IEEE Conference on Computational Complexity (CCC 2013) \nth\intcalcSub20131985 Annual Computational Complexity Conference (CCC 2013). URL: http://dx.doi.org/10.1145/2629541.
  6. Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the \nth\intcalcSub19861968 Annual ACM Symposium on Theory of Computing (STOC 1986), pages 6-20, 1986. URL: http://dx.doi.org/10.1145/12130.12132.
  7. Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials. Computational Complexity, 20(3):559-578, 2011. Google Scholar
  8. Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials. In Electronic Colloquium on Computational Complexity (ECCC) TR12-081, 2012. URL: https://eccc.weizmann.ac.il/report/2012/081/.
  9. Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Circuits. In Proceedings of the \ifnumcomp2014<1966 \nth\intcalcSub20141959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2014) \ifnumcomp2014<1975 \nth\intcalcSub20141959 Annual Symposium on Switching and Automata Theory (SWAT 2014) \nth\intcalcSub20141959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.15.
  10. Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. Super-polynomial lower bounds for depth-4 homogeneous arithmetic formulas. In Proceedings of the \nth\intcalcSub20141968 Annual ACM Symposium on Theory of Computing (STOC 2014), 2014. Google Scholar
  11. Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical Computer Science, 448:56-65, 2012. http://arxiv.org/abs/1006.4700, URL: http://dx.doi.org/10.1016/j.tcs.2012.03.041.
  12. Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for homogeneous depth-5 circuits over finite fields. Electronic Colloquium on Computational Complexity (ECCC), 2015. http://eccc.hpi-web.de/report/\ifnumcomp15>93192015/109/. URL: http://eccc.hpi-web.de/report/2015/109/.
  13. Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas: it’s all about the top fan-in. In Proceedings of the \nth\intcalcSub20141968 Annual ACM Symposium on Theory of Computing (STOC 2014), pages 136-145, 2014. URL: http://dx.doi.org/10.1145/2591796.2591827.
  14. Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits. In Proceedings of the \ifnumcomp2014<1966 \nth\intcalcSub20141959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2014) \ifnumcomp2014<1975 \nth\intcalcSub20141959 Annual Symposium on Switching and Automata Theory (SWAT 2014) \nth\intcalcSub20141959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.46.
  15. Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear circuits. Computational Complexity, 18(2):171-207, 2009. Preliminary version in the \ifnumcomp2008<1996 \nth\intcalcSub20081985 Annual Structure in Complexity Theory Conference (Structures 2008) \ifnumcomp2008<2015 \nth\intcalcSub20081985 Annual IEEE Conference on Computational Complexity (CCC 2008) \nth\intcalcSub20081985 Annual Computational Complexity Conference (CCC 2008). URL: http://dx.doi.org/10.1007/s00037-009-0270-8.
  16. Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for boolean circuits. In Proceedings of the \ifnumcomp2015<1966 \nth\intcalcSub20151959 Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 2015) \ifnumcomp2015<1975 \nth\intcalcSub20151959 Annual Symposium on Switching and Automata Theory (SWAT 2015) \nth\intcalcSub20151959 Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015), 2015. Preliminary version at http://arxiv.org/abs/1504.03398. URL: http://dx.doi.org/10.1109/FOCS.2015.67.
  17. Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey/releases/.
  18. Amir Shpilka. Affine projections of symmetric polynomials. Journal of Computer and System Sciences, 65(4):639-659, 2002. Preliminary version in the \ifnumcomp2001<1996 \nth\intcalcSub20011985 Annual Structure in Complexity Theory Conference (Structures 2001) \ifnumcomp2001<2015 \nth\intcalcSub20011985 Annual IEEE Conference on Computational Complexity (CCC 2001) \nth\intcalcSub20011985 Annual Computational Complexity Conference (CCC 2001), http://eccc.hpi-web.de/report/\ifnumcomp01>93192001/035/. URL: http://dx.doi.org/10.1016/S0022-0000(02)00021-1.
  19. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5:207-388, March 2010. URL: http://dx.doi.org/10.1561/0400000039.
  20. Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput., 240:2-11, 2015. Preliminary version in the \nth\intcalcSub20131975 Internationl Symposium on the Mathematical Foundations of Computer Science (MFCS 2013). URL: http://dx.doi.org/10.1016/j.ic.2014.09.004.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail