LIPIcs.OPODIS.2016.11.pdf
- Filesize: 0.78 MB
- 17 pages
We present the first polynomial self-stabilizing algorithm for finding a (2/3)-approximation of a maximum matching in a general graph. The previous best known algorithm has been presented by Manne et al. and has a sub-exponential time complexity under the distributed adversarial daemon. Our new algorithm is an adaptation of the Manne et al. algorithm and works under the same daemon, but with a time complexity in O(n^3) moves. Moreover, our algorithm only needs one more boolean variable than the previous one, thus as in the Manne et al. algorithm, it only requires a constant amount of memory space (three identifiers and two booleans per node).
Feedback for Dagstuhl Publishing