Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Delbianco, Germán Andrés; Sergey, Ilya; Nanevski, Aleksandar; Banerjee, Anindya License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
URN: urn:nbn:de:0030-drops-72558

; ; ;

Concurrent Data Structures Linked in Time



Arguments about correctness of a concurrent data structure are typically carried out by using the notion of linearizability and specifying the linearization points of the data structure's procedures. Such arguments are often cumbersome as the linearization points' position in time can be dynamic (depend on the interference, run-time values and events from the past, or even future), non-local (appear in procedures other than the one considered), and whose position in the execution trace may only be determined after the considered procedure has already terminated. In this paper we propose a new method, based on a separation-style logic, for reasoning about concurrent objects with such linearization points. We embrace the dynamic nature of linearization points, and encode it as part of the data structure's auxiliary state, so that it can be dynamically modified in place by auxiliary code, as needed when some appropriate run-time event occurs. We name the idea linking-in-time, because it reduces temporal reasoning to spatial reasoning. For example, modifying a temporal position of a linearization point can be modeled similarly to a pointer update in separation logic. Furthermore, the auxiliary state provides a convenient way to concisely express the properties essential for reasoning about clients of such concurrent objects. We illustrate the method by verifying (mechanically in Coq) an intricate optimal snapshot algorithm due to Jayanti, as well as some clients.

BibTeX - Entry

  author =	{Germ{\'a}n Andr{\'e}s Delbianco and Ilya Sergey and Aleksandar Nanevski and Anindya Banerjee},
  title =	{{Concurrent Data Structures Linked in Time}},
  booktitle =	{31st European Conference on Object-Oriented Programming (ECOOP 2017)},
  pages =	{8:1--8:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-035-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{74},
  editor =	{Peter M{\"u}ller},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-72558},
  doi =		{10.4230/LIPIcs.ECOOP.2017.8},
  annote =	{Keywords: Separation logic, Linearization Points, Concurrent snapshots, FCSL}

Keywords: Separation logic, Linearization Points, Concurrent snapshots, FCSL
Seminar: 31st European Conference on Object-Oriented Programming (ECOOP 2017)
Issue date: 2017
Date of publication: 16.06.2017

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI