LIPIcs.FSCD.2017.1.pdf
- Filesize: 200 kB
- 1 pages
Relational program verification is a variant of program verification where one focuses on guaranteeing properties about the executions of two programs, and as a special case about two executions of a single program on different inputs. Relational verification becomes particularly interesting when non-functional aspects of a computation, like probabilities or resource cost, are considered. Several approached to relational program verification have been developed, from relational program logics to relational abstract interpretation. In this talk, I will introduce two approaches to relational program verification for higher-order computations based on the use of type systems. The first approach consists in developing powerful type system where a rich language of assertions can be used to express complex relations between two programs. The second approach consists in developing more restrictive type systems enriched with effects expressing in a lightweight way relations between different runs of the same program. I will discuss the pros and cons of these two approaches on a concrete example: relational cost analysis, which aims at giving a bound on the difference in cost of running two programs, and as a special case the difference in cost of two executions of a single program on different inputs.
Feedback for Dagstuhl Publishing