LIPIcs.CONCUR.2017.16.pdf
- Filesize: 0.65 MB
- 16 pages
Efficient implementations of concurrent objects such as atomic collections are essential to modern computing. Unfortunately their correctness criteria — linearizability with respect to given ADT specifications — are hard to verify. Verifying linearizability is undecidable in general, even on classes of implementations where the usual control-state reachability is decidable. In this work we consider concurrent priority queues which are fundamental to many multi-threaded applications like task scheduling or discrete event simulation, and show that verifying linearizability of such implementations is reducible to control-state reachability. This reduction entails the first decidability results for verifying concurrent priority queues with an unbounded number of threads, and it enables the application of existing safety-verification tools for establishing their correctness.
Feedback for Dagstuhl Publishing