OASIcs.ATMOS.2017.4.pdf
- Filesize: 4.33 MB
- 17 pages
A novel landmark-based oracle (CFLAT) is presented, which provides earliest-arrival-time route plans in time-dependent road networks. To our knowledge, this is the first oracle that preprocesses combinatorial structures (collections of time-stamped min-travel-time-path trees) rather than travel-time functions. The preprocessed data structure is exploited by a new query algorithm (CFCA) which also computes (and pays for it) the actual connecting path that preserves the theoretical approximation guarantees. To make it practical and tackle the main burden of landmark-based oracles (the large preprocessing requirements), CFLAT is extensively engineered. A thorough experimental evaluation on two real-world benchmark instances shows that CFLAT achieves a significant improvement on preprocessing, approximation guarantees and query-times, in comparison to previous landmark-based oracles. It also achieves competitive query-time performance compared to state-of-art speedup heuristics for time-dependent road networks, whose query-times in most cases do not account for path construction.
Feedback for Dagstuhl Publishing