A Relational Algebra for Streaming Tables Living in a Temporal Database World

Authors Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, Wilma Penzo



PDF
Thumbnail PDF

File

LIPIcs.TIME.2017.15.pdf
  • Filesize: 0.58 MB
  • 17 pages

Document Identifiers

Author Details

Fabio Grandi
Federica Mandreoli
Riccardo Martoglia
Wilma Penzo

Cite As Get BibTex

Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. A Relational Algebra for Streaming Tables Living in a Temporal Database World. In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.TIME.2017.15

Abstract

The recently introduced streaming table concept, a fully native representation of streaming data inside a DBMS, enabled modern data-intensive applications with one-time queries (OTQs) and continuous queries (CQs) capabilities on both streaming and standard relational tables. In this paper, we fully acknowledge the temporal nature of streaming tables and we propose to go one step further and integrate them in a temporal DBMS context, where time management is native. Our aim is to break the traditional barrier between the streaming and the temporal worlds, offering complete interoperability between streams and temporal data. To this end, we present a continuous temporal algebra supporting both OTQs and CQs seamlessly on streaming, standard and temporal relational tables. We further show how the transition from continuous to one-time semantics can be managed by defining suitable translation rules, which can also be used as a basis for the implementation of the proposed continuous algebra in a temporal DBMS.

Subject Classification

Keywords
  • Continuous queries
  • Data streams
  • Relational algebra
  • Temporal DB

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Aurora: a new model and architecture for data stream management. VLDB J., 12(2):120-139, 2003. Google Scholar
  2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995. Google Scholar
  3. Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language: semantic foundations and query execution. VLDB J., 15(2):121-142, 2006. Google Scholar
  4. Ahmed M. Ayad and Jeffrey F. Naughton. Static Optimization of Conjunctive Queries with Sliding Windows over Infinite Streams. In Proc of ACM SIGMOD, pages 419-430, 2004. Google Scholar
  5. Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and Issues in Data Stream Systems. In Proc. of ACM PODS, pages 1-16, 2002. Google Scholar
  6. Luca Carafoli, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. Streaming Tables: Native Support to Streaming Data in DBMSs. IEEE Trans. on Systems, Man, and Cybernetics: Systems, pages 1-15, 2017. Google Scholar
  7. Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache Flinktrademark: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull., 38(4):28-38, 2015. Google Scholar
  8. Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. Semantic interoperability of multitemporal relational databases. In Proceedings of the 12th International Conference on the Entity-Relationship Approach, pages 463-474. Springer-Verlag, 1993. Google Scholar
  9. Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John Meehan, Andrew Pavlo, Michael Stonebraker, Erik Sutherland, Nesime Tatbul, Kristin Tufte, Hao Wang, and Stanley Zdonik. S-Store: A Streaming NewSQL System for Big Velocity Applications. Proc. VLDB, 7(13):1633-1636, August 2014. Google Scholar
  10. Qiming Chen and Meichun Hsu. Cut-and-Rewind: Extending Query Engine for Continuous Stream Analytics. In A. Hameurlain, J. Kueng, R. Wagner, A. Cuzzocrea, and U. Dayal, editors, TLDKS XXI, volume 9260 of LNCS, pages 94-114. Springer, 2015. Google Scholar
  11. Jan Chomicki. Temporal query languages: A survey. In Proceedings of the First International Conference on Temporal Logic, pages 506-534. Springer-Verlag, 1994. Google Scholar
  12. Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending the Kernel of a Relational DBMS with Comprehensive Support for Sequenced Temporal Queries. ACM Trans. Database Syst., 41(4):26:1-26:46, 2016. Google Scholar
  13. Steve Donoho. Early detection of insider trading in option markets. In Proc. of the ACM KDD, pages 420-429. ACM, 2004. Google Scholar
  14. Thanaa M. Ghanem, Ahmed K. Elmagarmid, Per-ake Larson, and Walid G. Aref. Supporting Views in Data Stream Management Systems. ACM Trans. Database Syst., 35(1):1, 2010. Google Scholar
  15. Lukasz Golab and M. Tamer Özsu. Update-Pattern-Aware Modeling and Processing of Continuous Queries. In Proc. of ACM SIGMOD, pages 658-669, 2005. Google Scholar
  16. Fabio Grandi. Temporal interoperability in Multi+Temporal databases. J. Database Manag., 9(1):14-23, 1998. Google Scholar
  17. Insider Trading. URL: https://www.sec.gov/fast-answers/answersinsiderhtm.html.
  18. Christian S. Jensen, Curtis E. Dyreson, Michael H. Böhlen, James Clifford, Ramez Elmasri, Shashi K. Gadia, Fabio Grandi, Patrick J. Hayes, Sushil Jajodia, Wolfgang Käfer, Nick Kline, Nikos A. Lorentzos, Yannis G. Mitsopoulos, Angelo Montanari, Daniel A. Nonen, Elisa Peressi, Barbara Pernici, John F. Roddick, Nandlal L. Sarda, Maria Rita Scalas, Arie Segev, Richard T. Snodgrass, Michael D. Soo, Abdullah Uz Tansel, Paolo Tiberio, and Gio Wiederhold. The consensus glossary of temporal database concepts - february 1998 version. In O. Etzion, S Jajodia, and S. Sripada, editors, Temporal Databases: Research and Practice, pages 367-405. Springer-Verlag, 1998. Google Scholar
  19. Jürgen Krämer and Bernhard Seeger. Semantics and Implementation of Continuous Sliding Window Queries over Data Streams. ACM Trans. Database Syst., 34(1):4, 2009. Google Scholar
  20. Nikolay Laptev, Barzan Mozafari, Hani Mousavi, Hetal Thakkar, Haixun Wang, Kai Zeng, and Carlo Zaniolo. Extending relational query languages for data streams. In Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors, Data Stream Management: Processing High-Speed Data Streams, pages 361-386. Springer Berlin Heidelberg, 2016. Google Scholar
  21. Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin Kersten. Enhanced stream processing in a dbms kernel. In Proc. of EDBT, pages 501-512, 2013. Google Scholar
  22. Yi Pan Milinda Pathirage, Julian Hyde and Beth Plale. SamzaSQL: Scalable fast data management with streaming SQL. In Proc. of IEEE IPDP Symposium Workshops, pages 1627-1636. IEEE Computer Society, 2016. Google Scholar
  23. Emanuele Panigati, Fabio A. Schreiber, and Carlo Zaniolo. Data streams and data stream management systems and languages. In Francesco Colace, Massimo De Santo, Vincenzo Moscato, Antonio Picariello, Fabio A. Schreiber, and Letizia Tanca, editors, Data Management in Pervasive Systems, pages 93-111. Springer, 2015. Google Scholar
  24. Kostas Patroumpas and Timos Sellis. Window specification over data streams. In Current Trends in Database Technology - EDBT 2006 Workshops, pages 445-464, 2006. Google Scholar
  25. Dušan Petkovic. Temporal data in relational database systems: A comparison. In Álvaro Rocha, Ana Maria Correia, Hojjat Adeli, Luis Paulo Reis, and Marcelo Mendonça Teixeira, editors, New Advances in Information Systems and Technologies, pages 13-23. Springer, 2016. Google Scholar
  26. Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995. Google Scholar
  27. Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in Data Stream Systems. In Proc. of ACM PODS, pages 263-274, 2004. Google Scholar
  28. David Toman. Point vs. interval-based query languages for temporal databases. In Proc. of ACM PODS, pages 58-67. ACM Press, 1996. Google Scholar
  29. Fred Zemke. What’s new in SQL:2011. SIGMOD Rec., 41(1):67-73, April 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail