Combinatorial Properties and Recognition of Unit Square Visibility Graphs

Authors Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, Sue Whitesides



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2017.30.pdf
  • Filesize: 0.56 MB
  • 15 pages

Document Identifiers

Author Details

Katrin Casel
Henning Fernau
Alexander Grigoriev
Markus L. Schmid
Sue Whitesides

Cite As Get BibTex

Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, and Sue Whitesides. Combinatorial Properties and Recognition of Unit Square Visibility Graphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.MFCS.2017.30

Abstract

Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel visibility between unit squares placed (on integer grid coordinates) in the plane. We investigate combinatorial properties of these graph classes and the hardness of variants of the recognition problem, i.e., the problem of representing USGV with fixed visibilities within small area and, for USV, the general recognition problem.

Subject Classification

Keywords
  • Visibility graphs
  • visibility layout
  • NP-completeness
  • exact algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. N. Argyriou, M. A. Bekos, and A. Symvonis. Maximizing the total resolution of graphs. In U. Brandes and S. Cornelsen, editors, Graph Drawing, GD 2010, volume 6502 of LNCS, pages 62-67. Springer, 2011. Google Scholar
  2. E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line RAC drawing problem is NP-hard. Journal of Graph Algorithms and Applications, 16(2):569-597, 2012. Google Scholar
  3. A. Arleo, C. Binucci, E. Di Giacomo, W. S. Evans, L. Grilli, G. Liotta, H. Meijer, F. Montecchiani, S. Whitesides, and S. K. Wismath. Visibility representations of boxes in 2.5 dimensions. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 251-265. Springer, 2016. Google Scholar
  4. M. Babbitt, J. Geneson, and T. Khovanova. On k-visibility graphs. Journal of Graph Algorithms and Applications, 19(1):345-360, 2015. Google Scholar
  5. S. N. Bhatt and S. S. Cosmadakis. The complexity of minimizing wire lengths in VLSI layouts. Information Processing Letters, 25(4):263-267, 1987. Google Scholar
  6. T. C. Biedl, G. Liotta, and F. Montecchiani. On visibility representations of non-planar graphs. In S. P. Fekete and A. Lubiw, editors, 32nd International Symposium on Computational Geometry, SoCG, volume 51 of LIPIcs, pages 19:1-19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  7. H. L. Bodlaender and G. Tel. A note on rectilinearity and angular resolution. Journal of Graph Algorithms and Applications, 8:89-94, 2004. Google Scholar
  8. P. Bose, H. Everett, S. P. Fekete, M. E. Houle, A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. C. Shermer, S. Whitesides, and C. Zelle. A visibility representation for graphs in three dimensions. Journal of Graph Algorithms and Applications, 2(2), 1998. Google Scholar
  9. K. Casel, H. Fernau, A. Grigoriev, M L. Schmid, and S. Whitesides. Combinatorial properties and recognition of unit square visibility graphs, 2017. URL: http://arxiv.org/abs/1706.05906.
  10. S. Chaplick, G. Guśpiel, G. Gutowski, T. Krawczyk, and G. Liotta. The partial visibility representation extension problem. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 266-279. Springer, 2016. Google Scholar
  11. S. Chaplick, F. Lipp, J.-W. Park, and A. Wolff. Obstructing visibilities with one obstacle. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 295-308. Springer, 2016. Google Scholar
  12. A. M. Dean, J. A. Ellis-Monaghan, S. Hamilton, and G. Pangborn. Unit rectangle visibility graphs. Electronic Journal of Combinatorics, 15, 2008. Google Scholar
  13. A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter. Bar k-visibility graphs. Journal of Graph Algorithms and Applications, 11(1):45-59, 2007. Google Scholar
  14. A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. Discrete Applied Mathematics, 75(1):9-25, 1997. Google Scholar
  15. W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theoretical Computer Science, 412(39):5156-5166, 2011. Google Scholar
  16. P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing a planar graph by vertical lines joining different levels. Discrete Mathematics, 46(3):319-321, 1983. Google Scholar
  17. P. Eades, S.-H. Hong, and S.-H. Poon. On rectilinear drawing of graphs. In D. Eppstein and E. R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, volume 5849 of LNCS, pages 232-243. Springer, 2010. Google Scholar
  18. W. S. Evans, G. Liotta, and F. Montecchiani. Simultaneous visibility representations of plane st-graphs using L-shapes. Theoretical Computer Science, 645:100-111, 2016. Google Scholar
  19. S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of graphs in 3D. In F.-J. Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing, GD'95, volume 1027 of LNCS, pages 234-241. Springer, 1996. Google Scholar
  20. S. Felsner. Rectangle and square representations of planar graphs. In J. Pach, editor, Thirty Essays on Geometric Graph Theory, pages 213-248. Springer, New York, 2013. Google Scholar
  21. M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Symvonis, E. Welzl, and G. J. Woeginger. Drawing graphs in the plane with high resolution. In 31st Annual Symposium on Foundations of Computer Science, FOCS, Volume I, pages 86-95. IEEE Computer Society, 1990. Google Scholar
  22. M. R. Garey and D. S. Johnson. Computers and Intractability. New York: Freeman, 1979. Google Scholar
  23. E. Gaub, M. Rose, and P. S. Wenger. The unit bar visibility number of a graph. Journal of Graph Algorithms and Applications, 20(2):269-297, 2016. Google Scholar
  24. E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, and S. K. Wismath. Ortho-polygon visibility representations of embedded graphs. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 280-294. Springer, 2016. Google Scholar
  25. J. Maňuch, M. Patterson, S.-H. Poon, and C. Thachuk. Complexity of finding non-planar rectilinear drawings of graphs. In U. Brandes and S. Cornelsen, editors, Graph Drawing - 18th International Symposium, GD 2010, volume 6502 of LNCS, pages 305-316. Springer, 2011. Google Scholar
  26. N. J. Nilsson. A mobile automaton: An application of artificial intelligence techniques. In D. E. Walker and L. M. Norton, editors, Proceedings of the 1st International Joint Conference on Artificial Intelligence, IJCAI, pages 509-520. William Kaufmann, 1969. Google Scholar
  27. T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Ann. ACM Symp. Theory of Computing STOC, pages 216-226. ACM Press, 1978. Google Scholar
  28. I. Streinu and S. Whitesides. Rectangle visibility graphs: Characterization, construction, and compaction. In H. Alt and M. Habib, editors, 20th Annual Symposium on Theoretical Aspects of Computer Science, STACS, volume 2607 of LNCS, pages 26-37. Springer, 2003. Google Scholar
  29. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete & Computational Geometry, 1(4):321-341, 1986. Google Scholar
  30. S. K. Wismath. Characterizing bar line-of-sight graphs. In J. O'Rourke, editor, Proceedings of the First Annual Symposium on Computational Geometry, pages 147-152. ACM, 1985. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail