LIPIcs.ITCS.2019.8.pdf
- Filesize: 0.59 MB
- 20 pages
We show that there is a zero-error randomized algorithm that, when given a small constant-depth Boolean circuit C made up of gates that compute constant-degree Polynomial Threshold functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials), counts the number of satisfying assignments to C in significantly better than brute-force time. Formally, for any constants d,k, there is an epsilon > 0 such that the zero-error randomized algorithm counts the number of satisfying assignments to a given depth-d circuit C made up of k-PTF gates such that C has size at most n^{1+epsilon}. The algorithm runs in time 2^{n-n^{Omega(epsilon)}}. Before our result, no algorithm for beating brute-force search was known for counting the number of satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit of linear size). The main new tool is the use of a learning algorithm for learning degree-1 PTFs (or Linear Threshold Functions) using comparison queries due to Kane, Lovett, Moran and Zhang (FOCS 2017). We show that their ideas fit nicely into a memoization approach that yields the #SAT algorithms.
Feedback for Dagstuhl Publishing