LIPIcs.ITCS.2019.24.pdf
- Filesize: 0.56 MB
- 20 pages
We introduce two new "degree of complementarity" measures: supermodular width and superadditive width. Both are formulated based on natural witnesses of complementarity. We show that both measures are robust by proving that they, respectively, characterize the gap of monotone set functions from being submodular and subadditive. Thus, they define two new hierarchies over monotone set functions, which we will refer to as Supermodular Width (SMW) hierarchy and Superadditive Width (SAW) hierarchy, with foundations - i.e. level 0 of the hierarchies - resting exactly on submodular and subadditive functions, respectively. We present a comprehensive comparative analysis of the SMW hierarchy and the Supermodular Degree (SD) hierarchy, defined by Feige and Izsak. We prove that the SMW hierarchy is strictly more expressive than the SD hierarchy: Every monotone set function of supermodular degree d has supermodular width at most d, and there exists a supermodular-width-1 function over a ground set of m elements whose supermodular degree is m-1. We show that previous results regarding approximation guarantees for welfare and constrained maximization as well as regarding the Price of Anarchy (PoA) of simple auctions can be extended without any loss from the supermodular degree to the supermodular width. We also establish almost matching information-theoretical lower bounds for these two well-studied fundamental maximization problems over set functions. The combination of these approximation and hardness results illustrate that the SMW hierarchy provides not only a natural notion of complementarity, but also an accurate characterization of "near submodularity" needed for maximization approximation. While SD and SMW hierarchies support nontrivial bounds on the PoA of simple auctions, we show that our SAW hierarchy seems to capture more intrinsic properties needed to realize the efficiency of simple auctions. So far, the SAW hierarchy provides the best dependency for the PoA of Single-bid Auction, and is nearly as competitive as the Maximum over Positive Hypergraphs (MPH) hierarchy for Simultaneous Item First Price Auction (SIA). We also provide almost tight lower bounds for the PoA of both auctions with respect to the SAW hierarchy.
Feedback for Dagstuhl Publishing