LIPIcs.FSTTCS.2017.23.pdf
- Filesize: 0.53 MB
- 14 pages
We use a technique of “lifting” functions introduced by Krause and Pudlak [Theor. Comput. Sci., 1997], to amplify degree-hardness measures of a function to corresponding monomial-hardness properties of the lifted function. We then show that any symmetric function F projects onto a “lift” of another suitable symmetric function f . These two key results enable us to prove several results on the complexity of symmetric functions in various models, as given below: 1. We provide a characterization of the approximate spectral norm of symmetric functions in terms of the spectrum of the underlying predicate, affirming a conjecture of Ada et al. [APPROX-RANDOM, 2012] which has several consequences. 2. We characterize symmetric functions computable by quasi-polynomial sized Threshold of Parity circuits. 3. We show that the approximate spectral norm of a symmetric function f characterizes the (quantum and classical) bounded error communication complexity of f o XOR. 4. Finally, we characterize the weakly-unbounded error communication complexity of symmetric XOR functions, resolving a weak form of a conjecture by Shi and Zhang [Quantum Information & Computation, 2009]
Feedback for Dagstuhl Publishing