LIPIcs.STACS.2018.35.pdf
- Filesize: 0.49 MB
- 15 pages
The Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a given integer k such that no two adjacent vertices are coloured alike. The complexity of Colouring is fully understood for graph classes characterized by one forbidden induced subgraph H. Despite a huge body of existing work, there are still major complexity gaps if two induced subgraphs H_1 and H_2 are forbidden. We let H_1 be the s-vertex cycle C_s and H_2 be the t-vertex path P_t. We show that Colouring is polynomial-time solvable for s=4 and t<=6, which unifies several known results for Colouring on (H_1,H_2)-free graphs. Our algorithm is based on a novel decomposition theorem for (C_4,P_6)-free graphs without clique cutsets into homogeneous pairs of sets and a new framework for bounding the clique-width of a graph by the clique-width of its subgraphs induced by homogeneous pairs of sets. To apply this framework, we also need to use divide-and-conquer to bound the clique-width of subgraphs induced by homogeneous pairs of sets. To complement our positive result we also prove that Colouring is NP-complete for s=4 and t>=9, which is the first hardness result on Colouring for (C_4,P_t)-free graphs.
Feedback for Dagstuhl Publishing