Recursion Schemes and the WMSO+U Logic

Author Pawel Parys



PDF
Thumbnail PDF

File

LIPIcs.STACS.2018.53.pdf
  • Filesize: 0.51 MB
  • 16 pages

Document Identifiers

Author Details

Pawel Parys

Cite As Get BibTex

Pawel Parys. Recursion Schemes and the WMSO+U Logic. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 53:1-53:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.STACS.2018.53

Abstract

We study the weak MSO logic extended by the unbounding quantifier (WMSO+U), expressing the fact that there exist arbitrarily large finite sets satisfying a given property. We prove that it is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given sentence of WMSO+U.

Subject Classification

Keywords
  • higher-order recursion schemes
  • intersection types
  • WMSO+U logic
  • boundedness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alfred V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM, 15(4):647-671, 1968. URL: http://dx.doi.org/10.1145/321479.321488.
  2. Achim Blumensath, Thomas Colcombet, and Christof Löding. Logical theories and compatible operations. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas]., volume 2 of Texts in Logic and Games, pages 73-106. Amsterdam University Press, 2008. Google Scholar
  3. Mikołaj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of Lecture Notes in Computer Science, pages 41-55. Springer, 2004. URL: http://dx.doi.org/10.1007/978-3-540-30124-0_7.
  4. Mikołaj Bojańczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst., 48(3):554-576, 2011. URL: http://dx.doi.org/10.1007/s00224-010-9279-2.
  5. Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 38-49. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-662-43951-7_4.
  6. Mikołaj Bojańczyk, Pawel Parys, and Szymon Toruńczyk. The MSO+U theory of (n, less) is undecidable. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 21:1-21:8. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2016.21.
  7. Mikołaj Bojańczyk and Szymon Toruńczyk. Weak MSO+U over infinite trees. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 648-660. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2012.648.
  8. Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292, 1996. URL: http://dx.doi.org/10.1142/S0129054196000191.
  9. Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Recursion schemes and logical reflection. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 120-129. IEEE Computer Society, 2010. URL: http://dx.doi.org/10.1109/LICS.2010.40.
  10. Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of higher-order recursion schemes. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 129-148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. URL: http://dx.doi.org/10.4230/LIPIcs.CSL.2013.129.
  11. Christopher H. Broadbent and C.-H. Luke Ong. On global model checking trees generated by higher-order recursion schemes. In Luca de Alfaro, editor, Foundations of Software Science and Computational Structures, 12th International Conference, FOSSACS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5504 of Lecture Notes in Computer Science, pages 107-121. Springer, 2009. URL: http://dx.doi.org/10.1007/978-3-642-00596-1_9.
  12. Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion schemes: Equivalence, safety and effective selection. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 165-174. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/LICS.2012.73.
  13. Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. Ordered tree-pushdown systems. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 163-177. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.163.
  14. Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 96-105. ACM, 2016. URL: http://dx.doi.org/10.1145/2933575.2934527.
  15. Wojciech Czerwinski, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on decidable separability by piecewise testable languages. In Adrian Kosowski and Igor Walukiewicz, editors, Fundamentals of Computation Theory - 20th International Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Proceedings, volume 9210 of Lecture Notes in Computer Science, pages 173-185. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-22177-9_14.
  16. Werner Damm. The IO- and oi-hierarchies. Theor. Comput. Sci., 20:95-207, 1982. URL: http://dx.doi.org/10.1016/0304-3975(82)90009-3.
  17. Solomon Feferman and Robert Lawson Vaught. The first order properties of products of algebraic systems. Fundamenta Mathematicae, 47(1):57-103, 1959. URL: http://eudml.org/doc/213526.
  18. Tobias Ganzow and Lukasz Kaiser. New algorithm for weak monadic second-order logic on inductive structures. In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 366-380. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-15205-4_29.
  19. Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 151-163. ACM, 2016. URL: http://dx.doi.org/10.1145/2837614.2837627.
  20. Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible pushdown automata and recursion schemes. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 452-461. IEEE Computer Society, 2008. URL: http://dx.doi.org/10.1109/LICS.2008.34.
  21. Lukasz Kaiser, Martin Lang, Simon Leßenich, and Christof Löding. A unified approach to boundedness properties in MSO. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 441-456. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.CSL.2015.441.
  22. Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science, pages 205-222. Springer, 2002. URL: http://dx.doi.org/10.1007/3-540-45931-6_15.
  23. Naoki Kobayashi. A practical linear time algorithm for trivial automata model checking of higher-order recursion schemes. In Martin Hofmann, editor, Foundations of Software Science and Computational Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in Computer Science, pages 260-274. Springer, 2011. URL: http://dx.doi.org/10.1007/978-3-642-19805-2_18.
  24. Naoki Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20:1-20:62, 2013. URL: http://dx.doi.org/10.1145/2487241.2487246.
  25. Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 179-188. IEEE Computer Society, 2009. URL: http://dx.doi.org/10.1109/LICS.2009.29.
  26. Hans Läuchli. A decision procedure for the weak second order theory of linear order. Studies in Logic and the Foundations of Mathematics, 50:189-197, 1968. URL: http://dx.doi.org/10.1016/S0049-237X(08)70525-1.
  27. Robin P. Neatherway and C.-H. Luke Ong. Travmc2: higher-order model checking for alternating parity tree automata. In Neha Rungta and Oksana Tkachuk, editors, 2014 International Symposium on Model Checking of Software, SPIN 2014, Proceedings, San Jose, CA, USA, July 21-23, 2014, pages 129-132. ACM, 2014. URL: http://dx.doi.org/10.1145/2632362.2632381.
  28. C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 81-90. IEEE Computer Society, 2006. URL: http://dx.doi.org/10.1109/LICS.2006.38.
  29. Pawel Parys. Intersection types and counting. In Naoki Kobayashi, editor, Proceedings Eighth Workshop on Intersection Types and Related Systems, ITRS 2016, Porto, Portugal, 26th June 2016., volume 242 of EPTCS, pages 48-63, 2016. URL: http://dx.doi.org/10.4204/EPTCS.242.6.
  30. Pawel Parys and Szymon Toruńczyk. Models of lambda-calculus and the weak MSO logic. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 11:1-11:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CSL.2016.11.
  31. Paweł Parys. Complexity of the diagonal problem for recursion schemes. Submitted to FSTTCS, 2017. Google Scholar
  32. Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. A type-directed abstraction refinement approach to higher-order model checking. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '14, San Diego, CA, USA, January 20-21, 2014, pages 61-72. ACM, 2014. URL: http://dx.doi.org/10.1145/2535838.2535873.
  33. Sylvain Salvati and Igor Walukiewicz. Using models to model-check recursive schemes. In Masahito Hasegawa, editor, Typed Lambda Calculi and Applications, 11th International Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings, volume 7941 of Lecture Notes in Computer Science, pages 189-204. Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-642-38946-7_15.
  34. Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inf. Comput., 239:340-355, 2014. URL: http://dx.doi.org/10.1016/j.ic.2014.07.012.
  35. Sylvain Salvati and Igor Walukiewicz. A model for behavioural properties of higher-order programs. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany, volume 41 of LIPIcs, pages 229-243. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.CSL.2015.229.
  36. Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown automata. Mathematical Structures in Computer Science, 26(7):1304-1350, 2016. URL: http://dx.doi.org/10.1017/S0960129514000590.
  37. Saharon Shelah. The monadic theory of order. Annals of Mathematics, 102(3):379-419, 1975. URL: http://dx.doi.org/10.2307/1971037.
  38. Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440-451. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-662-47666-6_35.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail