LIPIcs.IPEC.2017.16.pdf
- Filesize: 498 kB
- 13 pages
We show that, for any graph optimization problem in which the feasible solutions can be expressed by a formula in monadic second-order logic describing sets of vertices or edges and in which the goal is to minimize the sum of the weights in the selected sets, we can find the k best solution values for n-vertex graphs of bounded treewidth in time O(n + k log n). In particular, this applies to finding the k shortest simple paths between given vertices in directed graphs of bounded treewidth, giving an exponential speedup in the per-path cost over previous algorithms.
Feedback for Dagstuhl Publishing