Smaller Parameters for Vertex Cover Kernelization

Authors Eva-Maria C. Hols, Stefan Kratsch



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2017.20.pdf
  • Filesize: 0.51 MB
  • 12 pages

Document Identifiers

Author Details

Eva-Maria C. Hols
Stefan Kratsch

Cite As Get BibTex

Eva-Maria C. Hols and Stefan Kratsch. Smaller Parameters for Vertex Cover Kernelization. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 89, pp. 20:1-20:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.IPEC.2017.20

Abstract

We revisit the topic of polynomial kernels for Vertex Cover relative to structural parameters. Our starting point is a recent paper due to Fomin and Strømme [WG 2016] who gave a kernel with O(|X|^{12}) vertices when X is a vertex set such that each connected component of G-X contains at most one cycle, i.e., X is a modulator to a pseudoforest. We strongly generalize this result by using modulators to d-quasi-forests, i.e., graphs where each connected component has a feedback vertex set of size at most d, and obtain kernels with O(|X|^{3d+9}) vertices. Our result relies on proving that minimal blocking sets in a d-quasi-forest have size at most d+2. This bound is tight and there is a related lower bound of O(|X|^{d+2-epsilon}) on the bit size of kernels.

In fact, we also get bounds for minimal blocking sets of more general graph classes: For d-quasi-bipartite graphs, where each connected component can be made bipartite by deleting at most d vertices, we get the same tight bound of d+2 vertices. For graphs whose connected components each have a vertex cover of cost at most d more than the best fractional vertex cover, which we call d-quasi-integral, we show that minimal blocking sets have size at most 2d+2, which is also tight. Combined with existing randomized polynomial kernelizations this leads to randomized polynomial kernelizations for modulators to d-quasi-bipartite and d-quasi-integral graphs. There are lower bounds of O(|X|^{d+2-epsilon}) and O(|X|^{2d+2-epsilon}) for the bit size of such kernels.

Subject Classification

Keywords
  • Vertex Cover
  • Kernelization
  • Structural Parameterization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters. Crown structures for vertex cover kernelization. Theory Comput. Syst., 41(3):411-430, 2007. URL: http://dx.doi.org/10.1007/s00224-007-1328-0.
  2. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009. URL: http://dx.doi.org/10.1016/j.jcss.2009.04.001.
  3. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discrete Math., 28(1):277-305, 2014. URL: http://dx.doi.org/10.1137/120880240.
  4. Endre Boros, Martin Charles Golumbic, and Vadim E. Levit. On the number of vertices belonging to all maximum stable sets of a graph. Discrete Applied Mathematics, 124(1-3):17-25, 2002. URL: http://dx.doi.org/10.1016/S0166-218X(01)00327-4.
  5. Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? CoRR, abs/1609.08095, 2016. URL: http://arxiv.org/abs/1609.08095.
  6. Miroslav Chlebík and Janka Chlebíková. Crown reductions for the minimum weighted vertex cover problem. Discrete Applied Mathematics, 156(3):292-312, 2008. URL: http://dx.doi.org/10.1016/j.dam.2007.03.026.
  7. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. On the hardness of losing width. Theory Comput. Syst., 54(1):73-82, 2014. URL: http://dx.doi.org/10.1007/s00224-013-9480-1.
  8. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  9. Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization revisited. In Pinar Heggernes, editor, Graph-Theoretic Concepts in Computer Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages 171-182, 2016. URL: http://dx.doi.org/10.1007/978-3-662-53536-3_15.
  10. Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter tractability above A higher guarantee. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1152-1166. SIAM, 2016. URL: http://dx.doi.org/10.1137/1.9781611974331.ch80.
  11. Peter L. Hammer, Pierre Hansen, and Bruno Simeone. Vertices belonging to all or to no maximum stable sets of a graph. SIAM Journal on Algebraic Discrete Methods, 3(4):511-522, 1982. Google Scholar
  12. Bart M. P. Jansen. The power of data reduction: Kernels for fundamental graph problems. PhD thesis, Utrecht University, 2013. Google Scholar
  13. Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263-299, 2013. URL: http://dx.doi.org/10.1007/s00224-012-9393-4.
  14. Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller parameter. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 59:1-59:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59.
  15. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.46.
  16. Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Kernels for structural parameterizations of vertex cover - case of small degree modulators. In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 331-342. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.331.
  17. George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and algorithms. Math. Program., 8(1):232-248, 1975. URL: http://dx.doi.org/10.1007/BF01580444.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail