LIPIcs.SEA.2018.8.pdf
- Filesize: 469 kB
- 13 pages
The Student-Project Allocation problem with lecturer preferences over Students (SPA-S) comprises three sets of agents, namely students, projects and lecturers, where students have preferences over projects and lecturers have preferences over students. In this scenario we seek a stable matching, that is, an assignment of students to projects such that there is no student and lecturer who have an incentive to deviate from their assignee/s. We study SPA-ST, the extension of SPA-S in which the preference lists of students and lecturers need not be strictly ordered, and may contain ties. In this scenario, stable matchings may be of different sizes, and it is known that MAX SPA-ST, the problem of finding a maximum stable matching in SPA-ST, is NP-hard. We present a linear-time 3/2-approximation algorithm for MAX SPA-ST and an Integer Programming (IP) model to solve MAX SPA-ST optimally. We compare the approximation algorithm with the IP model experimentally using randomly-generated data. We find that the performance of the approximation algorithm easily surpassed the 3/2 bound, constructing a stable matching within 92% of optimal in all cases, with the percentage being far higher for many instances.
Feedback for Dagstuhl Publishing