LIPIcs.ICALP.2018.124.pdf
- Filesize: 477 kB
- 14 pages
In this paper, we study the problem of deciding the winner of reachability switching games. We study zero-, one-, and two-player variants of these games. We show that the zero-player case is NL-hard, the one-player case is NP-complete, and that the two-player case is PSPACE-hard and in EXPTIME. For the zero-player case, we also show P-hardness for a succinctly-represented model that maintains the upper bound of NP n coNP. For the one- and two-player cases, our results hold in both the natural, explicit model and succinctly-represented model. We also study the structure of winning strategies in these games, and in particular we show that exponential memory is required in both the one- and two-player settings.
Feedback for Dagstuhl Publishing