LIPIcs.FSCD.2018.10.pdf
- Filesize: 0.49 MB
- 18 pages
Bi-Intuitionistic Linear Logic (BILL) is an extension of Intuitionistic Linear Logic with a par, dual to the tensor, and subtraction, dual to linear implication. It is the logic of categories with a monoidal closed and a monoidal co-closed structure that are related by linear distributivity, a strength of the tensor over the par. It conservatively extends Full Intuitionistic Linear Logic (FILL), which includes only the par. We give proof nets for the multiplicative, unit-free fragment MBILL-. Correctness is by local rewriting in the style of Danos contractibility, which yields sequentialization into a relational sequent calculus extending the existing one for FILL. We give a second, geometric correctness condition combining Danos-Regnier switching and Lamarche's Essential Net criterion, and demonstrate composition both inductively and as a one-off global operation.
Feedback for Dagstuhl Publishing