LIPIcs.GISCIENCE.2018.42.pdf
- Filesize: 382 kB
- 6 pages
Cellular automata (CA) is an important area of research in GIScience, with recent research developing vector-based models in addition to the traditional raster data formats. One active area of research is the calibration of transition rules, particularly when applied to vector CA. Here we evaluate a particle swarm optimization (PSO) process to calibrate a vector CA model of land use change for a sub-region of Ipswich in Queensland, Australia, for the period 1999-2016. We compare the results with those for a raster CA of the same dataset. The spatial indices of the vector PSO-CA model exceed that of the raster model, with spatial accuracies being 82.45% and 76.47%, respectively. In addition, the vector PSO-CA model achieved a higher kappa coefficient. Vector-based PSO-CA model can be used for the exploration of urbanization process and provide a better understanding of land use change.
Feedback for Dagstuhl Publishing