LIPIcs.GISCIENCE.2018.45.pdf
- Filesize: 311 kB
- 6 pages
In this paper the potential of geospatial semantics for spatial predictions is explored. Therefore data from the LinkedGeoData platform is used to predict landcover classes described by the CORINE dataset. Geo-objects obtained from LinkedGeoData are described by an OWL ontology, which is utilized for the purpose of spatial prediction within this paper. This prediction is based on an association analysis which computes the collocations between the landcover classes and the semantically described geo-objects. The paper provides an analysis of the learned association rules and finally concludes with a discussion on the promising potential of geospatial semantics for spatial predictions, as well as potentially fruitful future research within this domain.
Feedback for Dagstuhl Publishing