Geospatial Semantics for Spatial Prediction (Short Paper)

Authors Marvin Mc Cutchan, Ioannis Giannopoulos



PDF
Thumbnail PDF

File

LIPIcs.GISCIENCE.2018.45.pdf
  • Filesize: 311 kB
  • 6 pages

Document Identifiers

Author Details

Marvin Mc Cutchan
  • Vienna University of Technology, Austria
Ioannis Giannopoulos
  • Vienna University of Technology, Austria

Cite AsGet BibTex

Marvin Mc Cutchan and Ioannis Giannopoulos. Geospatial Semantics for Spatial Prediction (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 45:1-45:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.45

Abstract

In this paper the potential of geospatial semantics for spatial predictions is explored. Therefore data from the LinkedGeoData platform is used to predict landcover classes described by the CORINE dataset. Geo-objects obtained from LinkedGeoData are described by an OWL ontology, which is utilized for the purpose of spatial prediction within this paper. This prediction is based on an association analysis which computes the collocations between the landcover classes and the semantically described geo-objects. The paper provides an analysis of the learned association rules and finally concludes with a discussion on the promising potential of geospatial semantics for spatial predictions, as well as potentially fruitful future research within this domain.

Subject Classification

ACM Subject Classification
  • Information systems → Association rules
  • Information systems → Geographic information systems
  • Software and its engineering → Semantics
Keywords
  • Geospatial semantics
  • spatial prediction
  • machine learning
  • Linked Data

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Witold Andrzejewski and Pawel Boinski. GPU-accelerated collocation pattern discovery. In Barbara Catania, Giovanna Guerrini, and Jaroslav Pokorný, editors, Advances in Databases and Information Systems, pages 302-315, Berlin, 2013. Springer. Google Scholar
  2. Christian Borgelt. An implementation of the fp-growth algorithm. In Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, OSDM '05, pages 1-5, New York, NY, USA, 2005. ACM. URL: http://dx.doi.org/10.1145/1133905.1133907.
  3. Max Craglia, Kees de Bie, Davina Jackson, Martino Pesaresi, Gábor Remetey-Fülöpp, Changlin Wang, Alessandro Annoni, Ling Bian, Fred Campbell, Manfred Ehlers, John van Genderen, Michael Goodchild, Huadong Guo, Anthony Lewis, Richard Simpson, Andrew Skidmore, and Peter Woodgate. Digital earth 2020: towards the vision for the next decade. International Journal of Digital Earth, 5(1):4-21, 2012. URL: http://dx.doi.org/10.1080/17538947.2011.638500.
  4. Ioannis Giannopoulos, Peter Kiefer, and Martin Raubal. Mobile outdoor gaze-based geoHCI. In Geographic Human-Computer Interaction, Workshop at CHI 2013, pages 12-13, 2013. Google Scholar
  5. M. F. Goodchild. The use cases of digital earth. International Journal of Digital Earth, 1(1):31-42, 2008. URL: http://dx.doi.org/10.1080/17538940701782528.
  6. Jon Jay Le Grange, Jens Lehmann, Spiros Athanasiou, Alejandra Garcia Rojas, Giorgos Giannopoulos, Daniel Hladky, Robert Isele, Axel Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Claus Stadler, and Matthias Wauer. The geoknow generator: Managing geospatial data in the linked data web. http://jens-lehmann.org/files/2014/lgd_geoknow_generator.pdf. (Accessed on 04 2018).
  7. Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns from spatial data sets: a general approach. IEEE Transactions on Knowledge and Data Engineering, 16(12):1472-1485, 2004. URL: http://dx.doi.org/10.1109/TKDE.2004.90.
  8. Krzysztof Koperski and Jiawei Han. Discovery of spatial association rules in geographic information databases. In Max J. Egenhofer and John R. Herring, editors, Advances in Spatial Databases, pages 47-66, Berlin, 1995. Springer. Google Scholar
  9. Rapidminer. Lightning fast data science platform | rapidminer. https://rapidminer.com/. (Accessed on 04 2018).
  10. Arpan Man Sainju and Zhe Jiang. Grid-based colocation mining algorithms on gpu for big spatial event data: A summary of results. In Michael Gertz, Matthias Renz, Xiaofang Zhou, Erik Hoel, Wei-Shinn Ku, Agnes Voisard, Chengyang Zhang, Haiquan Chen, Liang Tang, Yan Huang, Chang-Tien Lu, and Siva Ravada, editors, Advances in Spatial and Temporal Databases, pages 263-280, Cham, 2017. Springer International Publishing. Google Scholar
  11. Muhammad Shaheen, Muhammad Shahbaz, and Aziz Guergachi. Context based positive and negative spatio-temporal association rule mining. Knowledge-Based Systems, 37:261-273, 2013. URL: http://dx.doi.org/10.1016/j.knosys.2012.08.010.
  12. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. Addison-Wesley Longman Publishing, Boston, MA, USA, 2005. Google Scholar
  13. UBA. CORINE Landcover Nomenklatur (deutsch). http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/raumplanung/1_flaechennutzung/corine/CORINE_Nomenklatur.pdf. (Accessed on 04 2018).
  14. Cunjin Xue, Wanjiao Song, Lijuan Qin, Qing Dong, and Xiaoyang Wen. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 38:105-114, 2015. URL: http://dx.doi.org/10.1016/j.jag.2014.12.009.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail