Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper)

Authors Martin Sudmanns , Stefan Lang , Dirk Tiede , Christian Werner, Hannah Augustin, Andrea Baraldi



PDF
Thumbnail PDF

File

LIPIcs.GISCIENCE.2018.60.pdf
  • Filesize: 314 kB
  • 7 pages

Document Identifiers

Author Details

Martin Sudmanns
  • University of Salzburg, Department of Geoinformatics - Z_GIS, Schillerstraße 30, Salzburg, Austria
Stefan Lang
  • University of Salzburg, Department of Geoinformatics - Z_GIS, Schillerstraße 30, Salzburg, Austria
Dirk Tiede
  • University of Salzburg, Department of Geoinformatics - Z_GIS, Schillerstraße 30, Salzburg, Austria
Christian Werner
  • University of Salzburg, Department of Geoinformatics - Z_GIS, Schillerstraße 30, Salzburg, Austria
Hannah Augustin
  • University of Salzburg, Department of Geoinformatics - Z_GIS, Schillerstraße 30, Salzburg, Austria
Andrea Baraldi
  • Italian Space Agency (ASI), Rome, Italy.

Cite As Get BibTex

Martin Sudmanns, Stefan Lang, Dirk Tiede, Christian Werner, Hannah Augustin, and Andrea Baraldi. Abstract Data Types for Spatio-Temporal Remote Sensing Analysis (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 60:1-60:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.60

Abstract

Abstract data types are a helpful framework to formalise analyses and make them more transparent, reproducible and comprehensible. We are revisiting an approach based on the space, time and theme dimensions of remotely sensed data, and extending it with a more differentiated understanding of space-time representations. In contrast to existing approaches and implementations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of the spatial units' spatio-temporal characteristics, such as the size and shape of their geometry, and their relationships. Five different abstract data types are identified to describe geographical phenomenon, either directly or in combination: coverage, time series, trajectory, composition and evolution.

Subject Classification

ACM Subject Classification
  • Information systems → Search interfaces
Keywords
  • Big Earth Data
  • Semantic Analysis
  • Data Cube

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Christopher Allen, Thomas Hervey, Sara Lafia, Daniel W. Philips, Behzad Vahedi, and Werner Kuhn. Exploring the notion of spatial lenses. In Geographic Information Science 2016, pages 260-274. Springer, Montréal, Canada, 2016. URL: http://dx.doi.org/10.1007/978-3-319-45738-3.
  2. Andrea Baraldi, Dirk Tiede, Martin Sudmanns, and Stefan Lang. Systematic esa eo level 2 product generation as pre-condition to semantic content-based image retrieval and information/knowledge discovery in eo image databases. In Publications Office of the European Union, editor, Proceedings of the 2017 conference on Big Data from Space. Publications Office of the European Union, 2017. Google Scholar
  3. Peter Baumann, Paolo Mazzetti, Joachim Ungar, Roberto Barbera, Damiano Barboni, Alan Beccati, Lorenzo Bigagli, Enrico Boldrini, Riccardo Bruno, Antonio Calanducci, Piero Campalani, Oliver Clements, Alex Dumitru, Mike Grant, Pasquale Herzig, George Kakaletris, John Laxton, Panagiota Koltsida, Kinga Lipskoch, Alireza Rezaei Mahdiraji, Simone Mantovani, Vlad Merticariu, Antonio Messina, Dimitar Misev, Stefano Natali, Stefano Nativi, Jelmer Oosthoek, Marco Pappalardo, James Passmore, Angelo Pio Rossi, Francesco Rundo, Marcus Sen, Vittorio Sorbera, Don Sullivan, Mario Torrisi, Leonardo Trovato, Maria Grazia Veratelli, and Sebastian Wagner. Big data analytics for earth sciences: the earthserver approach. International Journal of Digital Earth, 9(1):3-29, 2016. URL: http://dx.doi.org/10.1080/17538947.2014.1003106.
  4. Mariana Belgiu, Martin Sudmanns, Dirk Tiede, Andrea Baraldi, and Stefan Lang. Spatiotemporal enabled content-based image retrieval. In Ninth International Conference on GIScience, Short Paper Proceedings, volume 9. University of California, 2016. Google Scholar
  5. Thomas Blaschke, Geoffrey J Hay, Maggi Kelly, Stefan Lang, Peter Hofmann, Elisabeth Addink, Raul Queiroz Feitosa, Freek van der Meer, Harald van der Werff, Frieke van Coillie, et al. Geographic object-based image analysis-towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87:180-191, 2014. Google Scholar
  6. M Drusch, U Del Bello, S Carlier, O Colin, V Fernandez, F Gascon, B Hoersch, C Isola, P Laberinti, P Martimort, et al. Sentinel-2: Esa’s optical high-resolution mission for gmes operational services. Remote Sensing of Environment, 120:25-36, 2012. Google Scholar
  7. Karine Reis Ferreira, Gilberto Camara, and Antônio Miguel Vieira Monteiro. An algebra for spatiotemporal data: From observations to events. Transactions in GIS, 18(2):253-269, 2014. Google Scholar
  8. Paula Furtado and Peter Baumann. Storage of multidimensional arrays based on arbitrary tiling. In Data Engineering, 1999. Proceedings., 15th International Conference on, pages 480-489. IEEE, 1999. Google Scholar
  9. Antony Galton. Experience and history: Processes and their relation to events. Journal of Logic and Computation, 18(3):323-340, 2008. Google Scholar
  10. Michael F Goodchild, May Yuan, and Thomas J Cova. Towards a general theory of geographic representation in gis. International journal of geographical information science, 21(3):239-260, 2007. Google Scholar
  11. Lewis D Griffin. Optimality of the basic colour categories for classification. Journal of the Royal Society Interface, 3(6):71-85, 2006. Google Scholar
  12. Stefan Growe. Knowledge based interpretation of multisensor and multitemporal remote sensing images. Int. Arch. Photogramm. Remote Sens, 32(pt 7):4-3, 1999. Google Scholar
  13. Adam Jacobs. The pathologies of big data. Communications of the ACM, 52(8):36, 2009. URL: http://dx.doi.org/10.1145/1536616.1536632.
  14. Christian Knoth and Daniel Nüst. Reproducibility and practical adoption of geobia with open-source software in docker containers. Remote Sensing, 9(3):290, 2017. Google Scholar
  15. Werner Kuhn. Core concepts of spatial information for transdisciplinary research. International Journal of Geographical Information Science, 26(12):2267-2276, 2012. URL: http://dx.doi.org/10.1080/13658816.2012.722637.
  16. T. Matsuyama and V.S.S. Hwang. SIGMA: A Knowledge-Based Aerial Image Understanding System. Advances in Computer Vision and Machine Intelligence. Springer US, 1990. Google Scholar
  17. Stefano Nativi, Paolo Mazzetti, and Max Craglia. A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data, pages 1-25, 2017. Google Scholar
  18. Peter Strobl, Peter Baumann, Adam Lewis, Zoltan Szantoi, Brian Killough, Matthew Purss, Max Craglia, Stefano Nativi, Alex Held, Trevor Dhu. The six faces of the data cube. In Publications Office of the European Union, editor, Proceedings of the 2017 conference on Big Data from Space, pages 32-35. Publications Office of the European Union, 2017. Google Scholar
  19. Simon Scheider, Frank O. Ostermann, and Benjamin Adams. Why good data analysts need to be critical synthesists. determining the role of semantics in data analysis. Future Generation Computer Systems, 72:11-22, 2017. URL: http://dx.doi.org/10.1016/j.future.2017.02.046.
  20. David Sinton. The inherent structure of information as a constraint to analysis: Mapped thematic data as a case study. Harvard papers on geographic information systems, 6:1-17, 1978. Google Scholar
  21. Martin Sudmanns, Dirk Tiede, Stefan Lang, and Andrea Baraldi. Semantic and syntactic interoperability in online processing of big earth observation data. International Journal of Digital Earth, 11(1):95-112, 2018. URL: http://dx.doi.org/10.1080/17538947.2017.1332112.
  22. Dirk Tiede, Andrea Baraldi, Martin Sudmanns, Mariana Belgiu, and Stefan Lang. Architecture and prototypical implementation of a semantic querying system for big earth observation image bases. European journal of remote sensing, 50(1):452-463, 2017. URL: http://dx.doi.org/10.1080/22797254.2017.1357432.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail