Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Manurangsi, Pasin; Trevisan, Luca https://www.dagstuhl.de/lipics License: Creative Commons Attribution 3.0 Unported license (CC-BY 3.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-94241
URL:

;

Mildly Exponential Time Approximation Algorithms for Vertex Cover, Balanced Separator and Uniform Sparsest Cut

pdf-format:


Abstract

In this work, we study the trade-off between the running time of approximation algorithms and their approximation guarantees. By leveraging a structure of the "hard" instances of the Arora-Rao-Vazirani lemma [Sanjeev Arora et al., 2009; James R. Lee, 2005], we show that the Sum-of-Squares hierarchy can be adapted to provide "fast", but still exponential time, approximation algorithms for several problems in the regime where they are believed to be NP-hard. Specifically, our framework yields the following algorithms; here n denote the number of vertices of the graph and r can be any positive real number greater than 1 (possibly depending on n). - A (2 - 1/(O(r)))-approximation algorithm for Vertex Cover that runs in exp (n/(2^{r^2)})n^{O(1)} time. - An O(r)-approximation algorithms for Uniform Sparsest Cut and Balanced Separator that runs in exp (n/(2^{r^2)})n^{O(1)} time. Our algorithm for Vertex Cover improves upon Bansal et al.'s algorithm [Nikhil Bansal et al., 2017] which achieves (2 - 1/(O(r)))-approximation in time exp (n/(r^r))n^{O(1)}. For Uniform Sparsest Cut and Balanced Separator, our algorithms improve upon O(r)-approximation exp (n/(2^r))n^{O(1)}-time algorithms that follow from a work of Charikar et al. [Moses Charikar et al., 2010].

BibTeX - Entry

@InProceedings{manurangsi_et_al:LIPIcs:2018:9424,
  author =	{Pasin Manurangsi and Luca Trevisan},
  title =	{{Mildly Exponential Time Approximation Algorithms for Vertex Cover, Balanced Separator and Uniform Sparsest Cut}},
  booktitle =	{Approximation, Randomization, and Combinatorial  Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Eric Blais and Klaus Jansen and Jos{\'e} D. P. Rolim and David Steurer},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/9424},
  URN =		{urn:nbn:de:0030-drops-94241},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.20},
  annote =	{Keywords: Approximation algorithms, Exponential-time algorithms, Vertex Cover, Sparsest Cut, Balanced Separator}
}

Keywords: Approximation algorithms, Exponential-time algorithms, Vertex Cover, Sparsest Cut, Balanced Separator
Seminar: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)
Issue date: 2018
Date of publication: 13.08.2018


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI