LIPIcs.ESA.2018.52.pdf
- Filesize: 445 kB
- 13 pages
String attractors [STOC 2018] are combinatorial objects recently introduced to unify all known dictionary compression techniques in a single theory. A set Gamma subseteq [1..n] is a k-attractor for a string S in Sigma^n if and only if every distinct substring of S of length at most k has an occurrence crossing at least one of the positions in Gamma. Finding the smallest k-attractor is NP-hard for k >= 3, but polylogarithmic approximations can be found using reductions from dictionary compressors. It is easy to reduce the k-attractor problem to a set-cover instance where the string's positions are interpreted as sets of substrings. The main result of this paper is a much more powerful reduction based on the truncated suffix tree. Our new characterization of the problem leads to more efficient algorithms for string attractors: we show how to check the validity and minimality of a k-attractor in near-optimal time and how to quickly compute exact solutions. For example, we prove that a minimum 3-attractor can be found in O(n) time when |Sigma| in O(sqrt[3+epsilon]{log n}) for some constant epsilon > 0, despite the problem being NP-hard for large Sigma.
Feedback for Dagstuhl Publishing