Algebraic Operators for Processing Sets of Temporal Intervals in Relational Databases

Authors Andreas Dohr, Christiane Engels, Andreas Behrend



PDF
Thumbnail PDF

File

LIPIcs.TIME.2018.11.pdf
  • Filesize: 0.8 MB
  • 16 pages

Document Identifiers

Author Details

Andreas Dohr
  • University of Bonn, Institute of Computer Science III, Germany
Christiane Engels
  • University of Bonn, Institute of Computer Science III, Germany
Andreas Behrend
  • University of Bonn, Institute of Computer Science III, Germany

Cite As Get BibTex

Andreas Dohr, Christiane Engels, and Andreas Behrend. Algebraic Operators for Processing Sets of Temporal Intervals in Relational Databases. In 25th International Symposium on Temporal Representation and Reasoning (TIME 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 120, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018) https://doi.org/10.4230/LIPIcs.TIME.2018.11

Abstract

The efficient management of temporal data has become increasingly important for many database applications. Most commercial systems already allow the management of temporal data but the operational support for processing this data is still rather limited. One particular reason is that many extension proposals typically require considerable modifications of the underlying database engine. In this paper, we propose a lightweight solution where temporal operators are realized using a library of user-defined functions. This way the complexity of temporal queries can be drastically reduced leading to more readable and less error-prone code without touching the database system. Our experiments show that the proposed operators significantly outperform temporal queries formulated in pure SQL. In addition, we investigate the possibility to incorporate algebraic optimization strategies directly into our operator definitions which allow for further performance improvements.

Subject Classification

ACM Subject Classification
  • Information systems → Database management system engines
  • Information systems → Information systems applications
Keywords
  • Temporal Databases
  • Relational Operators
  • Situation Calculus

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohamed H. Ali, Badrish Chandramouli, Balan Sethu Raman, and Ed Katibah. Spatio-temporal stream processing in microsoft streaminsight. IEEE Data Eng. Bull., 33(2):69-74, 2010. Google Scholar
  2. James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843, 1983. Google Scholar
  3. Chuan-Heng Ang and Kok-Phuang Tan. The interval b-tree. Information Processing Letters, 53(2):85-89, 1995. Google Scholar
  4. Andreas Behrend, Philip Schmiegelt, and Andreas Dohr. Supporting situation awareness in spatio-temporal databases. Datenbank-Spektrum, 16(3):207-218, 2016. Google Scholar
  5. Michael H. Böhlen, Renato Busatto, and Christian S. Jensen. Point-versus interval-based temporal data models. In Proc. of ICDE, pages 192-200, 1998. Google Scholar
  6. Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Temporal statement modifiers. ACM Trans. Database Syst., 25(4):407-456, 2000. Google Scholar
  7. Michael H. Böhlen, Richard T. Snodgrass, and Michael D. Soo. Coalescing in temporal databases. In VLDB 1996, pages 180-191, 1996. Google Scholar
  8. Tolga Bozkaya and Z. Meral Özsoyoglu. Indexing valid time intervals. In DEXA 1998, pages 541-550, 1998. Google Scholar
  9. Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. In SIGMOD, pages 433-444, 2012. Google Scholar
  10. Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst., 41(4):26:1-26:46, 2016. Google Scholar
  11. Curtis E. Dyreson. Temporal coalescing with now, granularity, and incomplete information. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 9-12, 2003, pages 169-180. ACM, 2003. URL: http://dx.doi.org/10.1145/872757.872779.
  12. Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter R. Pietzuch. Integrating scale out and fault tolerance in stream processing using operator state management. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 725-736. ACM, 2013. URL: http://dl.acm.org/citation.cfm?id=2463676, URL: http://dx.doi.org/10.1145/2463676.2465282.
  13. Dieter Gawlick, Eric S. Chan, Adel Ghoneimy, and Zhen Hua Liu. Mastering situation awareness: The next big challenge? SIGMOD Record, 44(3):19-24, 2015. Google Scholar
  14. The PostgreSQL Global Development Group. PostgreSQL 9.4.12 Documentation, 2017. [Online; accessed 28-May-2017]. URL: https://www.postgresql.org/docs/9.4/static/index.html.
  15. Christian S. Jensen, James Clifford, Shashi K. Gadia, Arie Segev, and Richard T. Snodgrass. A glossary of temporal database concepts. SIGMOD Record, 21(3):35-43, 1992. Google Scholar
  16. Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing intervals efficiently in object-relational databases. In VLDB 2000, pages 407-418, 2000. Google Scholar
  17. Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. Naiad: a timely dataflow system. In ACM SIGOPS 2013, pages 439-455, 2013. Google Scholar
  18. Bureau of Transportation Statistics. Airline On-Time Statistics and Delay Causes, 2017. [Online; accessed 7-February-2017]. URL: https://www.transtats.bts.gov.
  19. University of Zurich. Temporal PostgreSQL, 2017. [Online; accessed 28-May-2017]. URL: http://tpg.inf.unibz.it/downloads/postgresql-9.6beta3-temporal.tar.gz.
  20. Oracle. Oracle Database 12c Release 2 Online Documentation, 2017. [Online; accessed 7-February-2017]. URL: http://docs.oracle.com/database/122/index.htm.
  21. Richard T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Morgan Kaufmann, 1999. Google Scholar
  22. Xin Zhou, Fusheng Wang, and Carlo Zaniolo. Efficient temporal coalescing query support in relational database systems. In DEXA 2006, pages 676-686, 2006. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail