Multi-Budgeted Directed Cuts

Authors Stefan Kratsch, Shaohua Li, Dániel Marx, Marcin Pilipczuk, Magnus Wahlström



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2018.18.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Stefan Kratsch
  • Institut für Informatik, Humboldt-Universität zu Berlin
Shaohua Li
  • Institute of Informatics, University of Warsaw
Dániel Marx
  • Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
Marcin Pilipczuk
  • Institute of Informatics, University of Warsaw
Magnus Wahlström
  • Royal Holloway, University of London

Cite As Get BibTex

Stefan Kratsch, Shaohua Li, Dániel Marx, Marcin Pilipczuk, and Magnus Wahlström. Multi-Budgeted Directed Cuts. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 18:1-18:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.IPEC.2018.18

Abstract

In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph separation problems that turned out to be important in parameterized complexity: Skew Multicut and Directed Feedback Arc Set. In our generalization, we assign colors 1,2,...,l to some edges and give separate budgets k_1,k_2,...,k_l for colors 1,2,...,l. For every color i in {1,...,l}, let E_i be the set of edges of color i. The solution C for the multi-budgeted variant of a graph separation problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C cap E_i| <= k_i for every i in {1,...,l}.
Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be NP-hard even for l = 2. We propose FPT algorithms parameterized by k=k_1 +...+ k_l for all three problems. To this end, we develop a branching procedure for the multi-budgeted minimum cut problem that measures the progress of the algorithm not by reducing k as usual, by but elevating the capacity of some edges and thus increasing the size of maximum source-to-sink flow. Using the fact that a similar strategy is used to enumerate all important separators of a given size, we merge this process with the flow-guided branching and show an FPT bound on the number of (appropriately defined) important multi-budgeted separators. This allows us to extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems.
Furthermore, we show connections of the multi-budgeted variants with weighted variants of the directed cut problems and the Chain l-SAT problem, whose parameterized complexity remains an open problem. We show that these problems admit a bounded-in-parameter number of "maximally pushed" solutions (in a similar spirit as important separators are maximally pushed), giving somewhat weak evidence towards their tractability.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • important separators
  • multi-budgeted cuts
  • Directed Feedback Vertex Set
  • fixed-parameter tractability
  • minimum cut

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amit Agarwal, Noga Alon, and Moses Charikar. Improved approximation for directed cut problems. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 671-680. ACM, 2007. URL: http://dx.doi.org/10.1145/1250790.1250888.
  2. Chandra Chekuri, Sudipto Guha, and Joseph Naor. The Steiner k-Cut Problem. SIAM J. Discrete Math., 20(1):261-271, 2006. URL: http://dx.doi.org/10.1137/S0895480104445095.
  3. Jianer Chen and Iyad A. Kanj. Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms. J. Comput. Syst. Sci., 67(4):833-847, 2003. URL: http://dx.doi.org/10.1016/j.jcss.2003.09.003.
  4. Jianer Chen, Yang Liu, Songjian Lu, Barry O'Sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1-21:19, 2008. URL: http://dx.doi.org/10.1145/1411509.1411511.
  5. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. Designing FPT Algorithms for Cut Problems Using Randomized Contractions. SIAM J. Comput., 45(4):1171-1229, 2016. URL: http://dx.doi.org/10.1137/15M1032077.
  6. Rajesh Chitnis, László Egri, and Dániel Marx. List H-Coloring a Graph by Removing Few Vertices. Algorithmica, 78(1):110-146, 2017. URL: http://dx.doi.org/10.1007/s00453-016-0139-6.
  7. Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx. Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, ICALP (1), volume 7391 of Lecture Notes in Computer Science, pages 230-241. Springer, 2012. URL: http://dx.doi.org/10.1007/978-3-642-31594-7_20.
  8. Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset. SIAM J. Comput., 42(4):1674-1696, 2013. URL: http://dx.doi.org/10.1137/12086217X.
  9. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21275-3.
  10. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above lower bounds. TOCT, 5(1):3, 2013. URL: http://dx.doi.org/10.1145/2462896.2462899.
  11. Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating Minimum Feedback Sets and Multicuts in Directed Graphs. Algorithmica, 20(2):151-174, 1998. URL: http://dx.doi.org/10.1007/PL00009191.
  12. Piotr Faliszewski, Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Shmuel Onn, Marcin Pilipczuk, Michał Pilipczuk, Saket Saurabh, and Meirav Zehavi. What’s next? Future directions in Parameterized Complexity. Recent Advances in Parameterized Complexity, Tel-Aviv, Israel, 2017. Accessed 18.09.2018. URL: https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf.
  13. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications. SIAM J. Comput., 25(2):235-251, 1996. URL: http://dx.doi.org/10.1137/S0097539793243016.
  14. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted graphs. J. Algorithms, 50(1):49-61, 2004. URL: http://dx.doi.org/10.1016/S0196-6774(03)00111-1.
  15. Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization, 8(1):61-71, 2011. URL: http://dx.doi.org/10.1016/j.disopt.2010.05.003.
  16. Yoichi Iwata. Linear-Time Kernelization for Feedback Vertex Set. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 68:1-68:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68.
  17. Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching, and FPT Algorithms. SIAM J. Comput., 45(4):1377-1411, 2016. URL: http://dx.doi.org/10.1137/140962838.
  18. David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young. Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut. Math. Oper. Res., 29(3):436-461, 2004. URL: http://dx.doi.org/10.1287/moor.1030.0086.
  19. Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices: New Tools for Kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer Society, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.46.
  20. Stefan Kratsch and Magnus Wahlström. Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal. ACM Transactions on Algorithms, 10(4):20, 2014. URL: http://dx.doi.org/10.1145/2635810.
  21. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized Complexity and Approximability of Directed Odd Cycle Transversal. CoRR, abs/1704.04249, 2017. URL: http://arxiv.org/abs/1704.04249.
  22. Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394-406, 2006. URL: http://dx.doi.org/10.1016/j.tcs.2005.10.007.
  23. Dániel Marx. What’s Next? Future Directions in Parameterized Complexity. In Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages 469-496. Springer, 2012. URL: http://dx.doi.org/10.1007/978-3-642-30891-8_20.
  24. Dániel Marx, Barry O'Sullivan, and Igor Razgon. Finding small separators in linear time via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013. URL: http://dx.doi.org/10.1145/2500119.
  25. Dániel Marx and Igor Razgon. Fixed-Parameter Tractability of Multicut Parameterized by the Size of the Cutset. SIAM J. Comput., 43(2):355-388, 2014. URL: http://dx.doi.org/10.1137/110855247.
  26. Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four terminal pairs. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1167-1178. SIAM, 2016. URL: http://dx.doi.org/10.1137/1.9781611974331.ch81.
  27. Igor Razgon and Barry O'Sullivan. Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci., 75(8):435-450, 2009. URL: http://dx.doi.org/10.1016/j.jcss.2009.04.002.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail