LIPIcs.ICDT.2019.21.pdf
- Filesize: 0.65 MB
- 19 pages
We propose an approach for answering conjunctive queries with negation, where the negated relations have bounded degree. Its data complexity matches that of the InsideOut and PANDA algorithms for the positive subquery of the input query and is expressed in terms of the fractional hypertree width and the submodular width respectively. Its query complexity depends on the structure of the conjunction of negated relations; in general it is exponential in the number of join variables occurring in negated relations yet it becomes polynomial for several classes of queries. This approach relies on several contributions. We show how to rewrite queries with negation on bounded-degree relations into equivalent conjunctive queries with not-all-equal (NAE) predicates, which are a multi-dimensional analog of disequality (!=). We then generalize the known color-coding technique to conjunctions of NAE predicates and explain it via a Boolean tensor decomposition of conjunctions of NAE predicates. This decomposition can be achieved via a probabilistic construction that can be derandomized efficiently.
Feedback for Dagstuhl Publishing