Let p_1,...,p_n be n distinct points in the plane, and assume that the minimum inter-point distance occurs s_{min} times, while the maximum inter-point distance occurs s_{max} times. It is shown that s_{min} s_{max} <= (9/8)n^2 + O(n); this settles a conjecture of Erdős and Pach (1990).
@InProceedings{dumitrescu:LIPIcs.SoCG.2019.30, author = {Dumitrescu, Adrian}, title = {{A Product Inequality for Extreme Distances}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {30:1--30:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.30}, URN = {urn:nbn:de:0030-drops-104343}, doi = {10.4230/LIPIcs.SoCG.2019.30}, annote = {Keywords: Extreme distances, repeated distances} }
Feedback for Dagstuhl Publishing