LIPIcs.ICALP.2019.89.pdf
- Filesize: 0.56 MB
- 14 pages
Short cycle decomposition is an edge partitioning of an unweighted graph into edge-disjoint short cycles, plus a small number of extra edges not in any cycle. This notion was introduced by Chu et al. [FOCS'18] as a fundamental tool for graph sparsification and sketching. Clearly, it is most desirable to have a fast algorithm for partitioning the edges into as short as possible cycles, while omitting few edges. The most naïve procedure for such decomposition runs in time O(m * n) and partitions the edges into O(log n)-length edge-disjoint cycles plus at most 2n edges. Chu et al. improved the running time considerably to m^{1+o(1)}, while increasing both the length of the cycles and the number of omitted edges by a factor of n^{o(1)}. Even more recently, Liu-Sachdeva-Yu [SODA'19] showed that for every constant delta in (0,1] there is an O(m * n^{delta})-time algorithm that provides, w.h.p., cycles of length O(log n)^{1/delta} and O(n) extra edges. In this paper, we significantly improve upon these bounds. We first show an m^{1+o(1)}-time deterministic algorithm for computing nearly optimal cycle decomposition, i.e., with cycle length O(log^2 n) and an extra subset of O(n log n) edges not in any cycle. This algorithm is based on a reduction to low-congestion cycle covers, introduced by the authors in [SODA'19]. We also provide a simple deterministic algorithm that computes edge-disjoint cycles of length 2^{1/epsilon} with n^{1+epsilon}* 2^{1/epsilon} extra edges, for every epsilon in (0,1]. Combining this with Liu-Sachdeva-Yu [SODA'19] gives a linear time randomized algorithm for computing cycles of length poly(log n) and O(n) extra edges, for every n-vertex graphs with n^{1+1/delta} edges for some constant delta. These decomposition algorithms lead to improvements in all the algorithmic applications of Chu et al. as well as to new distributed constructions.
Feedback for Dagstuhl Publishing