LIPIcs.CONCUR.2019.28.pdf
- Filesize: 0.69 MB
- 13 pages
In this paper we consider the reachability problem for bounded branching VASS. Bounded VASS are a variant of the classic VASS model where all values in all configurations are upper bounded by a fixed natural number, encoded in binary in the input. This model gained a lot of attention in 2012 when Haase et al. showed its connections with timed automata. Later in 2013 Fearnley and Jurdziński proved that the reachability problem in this model is PSPACE-complete even in dimension 1. Here, we investigate the complexity of the reachability problem when the model is extended with branching transitions, and we prove that the problem is EXPTIME-complete when the dimension is 2 or larger.
Feedback for Dagstuhl Publishing