New Pumping Technique for 2-Dimensional VASS

Authors Wojciech Czerwiński , Sławomir Lasota , Christof Löding, Radosław Piórkowski



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2019.62.pdf
  • Filesize: 0.49 MB
  • 14 pages

Document Identifiers

Author Details

Wojciech Czerwiński
  • University of Warsaw, Poland
Sławomir Lasota
  • University of Warsaw, Poland
Christof Löding
  • RWTH Aachen, Germany
Radosław Piórkowski
  • University of Warsaw, Poland

Cite As Get BibTex

Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski. New Pumping Technique for 2-Dimensional VASS. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.MFCS.2019.62

Abstract

We propose a new pumping technique for 2-dimensional vector addition systems with states (2-VASS) building on natural geometric properties of runs. We illustrate its applicability by reproving an exponential bound on the length of the shortest accepting run, and by proving a new pumping lemma for languages of 2-VASS. The technique is expected to be useful for settling questions concerning languages of 2-VASS, e.g., for establishing decidability status of the regular separability problem.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
  • Theory of computation → Formal languages and automata theory
Keywords
  • vector addition systems with states
  • pumping
  • decidability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan, and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In Proc. LICS'16, pages 207-216, 2016. Google Scholar
  2. Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reachability in Two-Dimensional Vector Addition Systems with States Is PSPACE-Complete. In Proc. LICS'15, pages 32-43, 2015. Google Scholar
  3. Dmitry Chistikov, Wojciech Czerwinski, Piotr Hofman, Michal Pilipczuk, and Michael Wehar. Shortest Paths in One-Counter Systems. In Proc. of FOSSACS'16, pages 462-478, 2016. Google Scholar
  4. Dmitry Chistikov and Christoph Haase. The Taming of the Semi-Linear Set. In Proc. ICALP'16, pages 128:1-128:13, 2016. Google Scholar
  5. Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata. In LICS'17, pages 1-12, 2017. Google Scholar
  6. Matthias Englert, Ranko Lazic, and Patrick Totzke. Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete. In Proc. of LICS '16, pages 477-484, 2016. Google Scholar
  7. John E. Hopcroft and Jean-Jacques Pansiot. On the Reachability Problem for 5-Dimensional Vector Addition Systems. Theor. Comput. Sci., 8:135-159, 1979. URL: https://doi.org/10.1016/0304-3975(79)90041-0.
  8. Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci., 3(2):147-195, 1969. Google Scholar
  9. S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Preliminary Version). In STOC'82, pages 267-281, 1982. Google Scholar
  10. Michel Latteux. Langages à un Compteur. J. Comput. Syst. Sci., 26(1):14-33, 1983. Google Scholar
  11. Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC'81, pages 238-246, 1981. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail