Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs

Authors Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, Kunihiro Wasa



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2019.73.pdf
  • Filesize: 0.59 MB
  • 14 pages

Document Identifiers

Author Details

Alessio Conte
  • Dipartimento di Informatica, Università di Pisa, Italy
Roberto Grossi
  • Dipartimento di Informatica, Università di Pisa, Italy
Mamadou Moustapha Kanté
  • Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
Andrea Marino
  • Dipartimento di Statistica, Informatica, Applicazioni, Università di Firenze, Italy
Takeaki Uno
  • National Institute of Informatics, Tokyo, Japan
Kunihiro Wasa
  • National Institute of Informatics, Tokyo, Japan

Cite As Get BibTex

Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and Kunihiro Wasa. Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 73:1-73:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.MFCS.2019.73

Abstract

This paper investigates induced Steiner subgraphs as a variant of the classical Steiner trees, so as to compactly represent the (exponentially many) Steiner trees sharing the same underlying induced subgraph. We prove that the enumeration of all (inclusion-minimal) induced Steiner subgraphs is harder than the well-known Hypergraph Transversal enumeration problem if the number of terminals is not fixed. When the number of terminals is fixed, we propose a polynomial delay algorithm for listing all induced Steiner subgraphs of minimum size. We also propose a polynomial delay algorithm for listing the set of minimal induced Steiner subgraphs when the number of terminals is 3.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph enumeration
Keywords
  • Graph algorithms
  • enumeration
  • listing and counting
  • Steiner trees
  • induced subgraphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Aazami, J. Cheriyan, and K. R. Jampani. Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees in Planar Graphs. Algorithmica, 63(1-2):425-456, June 2012. Google Scholar
  2. Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-based Optimal Algorithms for Computing Steiner Components with Maximum Connectivity. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD '15, pages 459-474, New York, NY, USA, 2015. ACM. URL: https://doi.org/10.1145/2723372.2746486.
  3. Chandra Chekuri, Alina Ene, and Ali Vakilian. Node-Weighted Network Design in Planar and Minor-Closed Families of Graphs. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages 206-217. Springer, 2012. Google Scholar
  4. Joseph Cheriyan and Mohammad R. Salavatipour. Packing element-disjoint Steiner trees. ACM Transactions on Algorithms, 3(4):47:1-47:10, November 2007. URL: https://doi.org/10.1145/1290672.1290684.
  5. Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, and Luca Versari. Listing Maximal Independent Sets with Minimal Space and Bounded Delay. In String Processing and Information Retrieval - 24th International Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings, pages 144-160, 2017. URL: https://doi.org/10.1007/978-3-319-67428-5_13.
  6. Nicolas Derhy and Christophe Picouleau. Finding induced trees. Discrete Applied Mathematics, 157(17):3552-3557, 2009. Google Scholar
  7. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  8. DIMACS. 11th DIMACS Implementation Challenge. http://dimacs11.zib.de/, 2014 (page accessed April 2019).
  9. Mitre C. Dourado, Rodolfo A. Oliveira, and Fábio Protti. Algorithmic aspects of Steiner convexity and enumeration of Steiner trees. Annals of Operations Research, 223(1):155-171, December 2014. URL: https://doi.org/10.1007/s10479-014-1607-5.
  10. Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational Aspects of Monotone Dualization: A Brief Survey. Discrete Appl. Math., 156(11):2035-2049, June 2008. Google Scholar
  11. Sudipto Guha and Samir Khuller. Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets. Information and Computation, 150(1):57-74, 1999. URL: https://doi.org/10.1006/inco.1998.2754.
  12. Mathias Hauptmann and Marek Karpinski. A Compendium on Steiner Tree Problems. http://theory.cs.uni-bonn.de/info5/steinerkompendium/, Accessed February 2018.
  13. Daiki Hoshika and Eiji Miyano. Approximation Algorithms for Packing Element-Disjoint Steiner Trees on Bounded Terminal Nodes. IEICE Transactions, 99-A(6):1059-1066, 2016. URL: http://search.ieice.org/bin/summary.php?id=e99-a_6_1059.
  14. Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. On Minimal Steiner Maximum-Connected Subgraph Queries. IEEE Trans. Knowl. Data Eng, 29(11):2455-2469, 2017. URL: https://doi.org/10.1109/TKDE.2017.2730873.
  15. L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the Complexity of Some Enumeration Problems for Matroids. SIAM Journal on Discrete Mathematics, 19(4):966-984, January 2005. URL: https://doi.org/10.1137/S0895480103428338.
  16. PACE. The parametrized Algorithms and Computational Experiments Challenge. https://pacechallenge.wordpress.com/pace-2018/, 2018.
  17. Jan Arne Telle and Yngve Villanger. Connecting Terminals and 2-Disjoint Connected Subgraphs. In Graph-Theoretic Concepts in Computer Science, pages 418-428. Springer Berlin Heidelberg, 2013. Google Scholar
  18. Takeaki Uno. An Output Linear Time Algorithm for Enumerating Chordless Cycles. IPSJ SIG Notes, 2003(110):47-53, November 2003. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail