LIPIcs.ITP.2019.33.pdf
- Filesize: 428 kB
- 7 pages
Hilbert’s 10th problem asks for an algorithm to tell whether or not a given diophantine equation has a solution over the integers. The non-existence of such an algorithm was shown in 1970 by Yuri Matiyasevich. The key step is known as the DPRM theorem: every recursively enumerable set of natural numbers is Diophantine. We present the formalization of Matiyasevich’s proof of the DPRM theorem in Isabelle. To represent recursively enumerable sets in equations, we implement and arithmetize register machines. Using several number-theoretic lemmas, we prove that exponentiation has a diophantine representation. Further, we contribute a small library of number-theoretic implementations of binary digit-wise relations. Finally, we discuss and contribute an is_diophantine predicate. We expect the complete formalization of the DPRM theorem in the near future; at present it is complete except for a minor gap in the arithmetization proofs of register machines and extending the is_diophantine predicate by two binary digit-wise relations.
Feedback for Dagstuhl Publishing