LIPIcs.COSIT.2019.5.pdf
- Filesize: 11.18 MB
- 8 pages
Simulation models for pedestrian movement are valuable tools to support decision-making processes in urban design. However, existing models of pedestrian behaviour are built on simplistic assumptions regarding people’s representation of the urban space and spatial behaviour. In this work, a route-choice algorithm that takes into account regionalisation processes and the hierarchical organisation of geographical elements is adapted for pedestrian movement and incorporated into an agent-based model. The macro-level patterns emerging from two scenarios, one employing an angular-change minimisation algorithm and the other employing the regional algorithm here proposed, are compared for a case study in London, UK. Our routing algorithm led agents to recur to a higher number of street segments, i.e. routes were more diverse among agents. Though validation has not yet been performed, we deem the patterns resulting from the regional algorithm more plausible.
Feedback for Dagstuhl Publishing