Why Classificatory Information of Geographic Regions Is Quantum Information (Vision Paper)

Author Thomas Bittner



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2019.16.pdf
  • Filesize: 1.27 MB
  • 15 pages

Document Identifiers

Author Details

Thomas Bittner
  • Departments of Philosophy and Geography, State University of New York, 135 Park Hall, Buffalo, NY 14260, USA

Cite As Get BibTex

Thomas Bittner. Why Classificatory Information of Geographic Regions Is Quantum Information (Vision Paper). In 14th International Conference on Spatial Information Theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 142, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.COSIT.2019.16

Abstract

This paper gives an information - theoretic argument in support of the claim that there is geographic quantum information. Quantum information is information in the sense of Shannon’s information theory, that, in addition, satisfies two characteristic postulates. The paper aims to show that if the density of information (bits per unit of space) that is possible for classificatory geographic qualities is limited, then it follows that the two characteristic postulates of quantum information are satisfied for information about those geographic qualities.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantum information theory
Keywords
  • Information theory
  • quantum information
  • classification and delineation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. G. Bailey. Ecosystem Geography. Springer Verlag, Berlin, 1996. Google Scholar
  2. Enrico G. Beltrametti, Gianni Cassinelli, and Peter A. Carruthers. The Logic of Quantum Mechanics, volume 15 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1984. URL: https://doi.org/10.1017/CBO9781107340725.
  3. T. Bittner. Vagueness and the tradeoff between the classification and delineation of geographic regions. Int. J. Geographical Information Systems (IJGIS), 25(5):825-850, 2011. Google Scholar
  4. Thomas Bittner. Is there a quantum geography? In Timothy Tambassi, editor, Philosophy of GIS. Springer Verlag, 2020. Google Scholar
  5. P. Bolstad. GIS Fundamentals. Eider Press, Minnesota, 2005. Google Scholar
  6. P. Grenon and B. Smith. SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cognition and Computation, 4(1):69-103, 2004. Google Scholar
  7. Alexei Grinbaum. Information-Theoretic Princple Entails Orthomodularity of a Lattice. Foundations of Physics Letters, 18(6):563-572, November 2005. URL: https://doi.org/10.1007/s10702-005-1129-0.
  8. R. I. G. Hughes. Quantum Logic. Scientific American, 245(4):202-213, 1981. URL: http://www.jstor.org/stable/24964585.
  9. W. Koeppen. Grundriss der Klimakunde. W. de Gruyter, Berlin, 1931. Google Scholar
  10. James M. Omernik. Map Supplement: Ecoregions of the Conterminous United States. Annals of the Association of American Geographers, 77(1):118-125, 1987. URL: http://links.jstor.org/sici?sici=0004-5608%28198703%2977%3A1%3C118%3AMSEOTC%3E2.0.CO%3B2-V.
  11. Carlo Rovelli. Relational quantum mechanics. Int. J. Theor. Phys., 35:1637-1678, 1996. URL: https://doi.org/10.1007/BF02302261.
  12. David H. Sanford. Determinates vs. Determinables. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Stanford University, spring 2019 edition, 2019. Google Scholar
  13. C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423, 1948. URL: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  14. P. Simons. Parts, A Study in Ontology. Clarendon Press, Oxford, 1987. Google Scholar
  15. D. F. Sinton. The inherent structure of information as a constraint to analysis: Mapped thematic data as a case study. In G. Dutton, editor, Harvard Papers on Geographic Information Systems, pages 1-17. Addison Wesley, 1978. Google Scholar
  16. B. Smith. Fiat Objects. Topoi, 20(2):131-48, 2001. Google Scholar
  17. B. Smith and A.C. Varzi. Fiat and Bona Fide Boundaries. Philosophy and Phenomenological Research, 60(2):401-420, 2000. Google Scholar
  18. John Archibald Wheeler. Information, Physics, Quantum: The Search for Links. In Proceedings III International Symposium on Foundations of Quantum Mechanics, pages 354-358. Physics Department, Princeton University, 1989. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail