Planning and Explanations with a Learned Spatial Model

Authors Susan L. Epstein, Raj Korpan



PDF
Thumbnail PDF

File

LIPIcs.COSIT.2019.22.pdf
  • Filesize: 3.98 MB
  • 20 pages

Document Identifiers

Author Details

Susan L. Epstein
  • Department of Computer Science, Hunter College and The Graduate Center of , The City University of New York, New York, New York 10065, USA
Raj Korpan
  • Department of Computer Science, The Graduate Center of The City University of New York, New York, New York 10016, USA

Acknowledgements

The authors thank Anoop Aroor for his thoughtful comments, Gil Dekel and Sarah Mathew for their pioneering work on doors and hallways, and the anonymous referees for their many constructive suggestions.

Cite As Get BibTex

Susan L. Epstein and Raj Korpan. Planning and Explanations with a Learned Spatial Model. In 14th International Conference on Spatial Information Theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 142, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.COSIT.2019.22

Abstract

This paper reports on a robot controller that learns and applies a cognitively-based spatial model as it travels in challenging, real-world indoor spaces. The model not only describes indoor space, but also supports robust, model-based planning. Together with the spatial model, the controller’s reasoning framework allows it to explain and defend its decisions in accessible natural language. The novel contributions of this paper are an enhanced cognitive spatial model that facilitates successful reasoning and planning, and the ability to explain navigation choices for a complex environment. Empirical evidence is provided by simulation of a commercial robot in a large, complex, realistic world.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Artificial intelligence
  • Computing methodologies → Machine learning
  • Computing methodologies → Modeling and simulation
Keywords
  • navigation
  • planning
  • learning
  • explanation
  • spatial model
  • heuristics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Aroor, S. L. Epstein, and R. Korpan. Online Learning for Crowd-sensitive Path Planning. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pages 1702-1710, 2018. Google Scholar
  2. D. P. Barrett, S. A. Bronikowski, H. Yu, and J. M. Siskind. Driving Under the Influence (of Language). IEEE Trans. on Neural Networks and Learning Systems, pages 1-16, 2017. Google Scholar
  3. P. Beeson, J. Modayil, and B. Kuipers. Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy. The International Journal of Robotics Research, 29(4):428-459, 2010. Google Scholar
  4. L. Buhry, A. H. Azizi, and S. Cheng. Reactivation, replay, and preplay: How it might all fit together. Neural Plasticity, 2011, 2011. Google Scholar
  5. T. Chakraborti, S. Sreedharan, S. Grover, and S. Kambhampati. Plan explanations as model reconciliation. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 258-266. IEEE, 2019. Google Scholar
  6. E. Chown, S. Kaplan, and D. Kortenkamp. Prototypes, location, and associative networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive Science, 19(1):1-51, 1995. Google Scholar
  7. E. R. Chrastil and W. H. Warren. Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology: Learning, Memory, and Cgnition, 39(5):1520-1537, 2013. Google Scholar
  8. E. R. Chrastil and W. H. Warren. From cognitive maps to cognitive graphs. PloS One, 9(11):1-8, 2014. Google Scholar
  9. M. Coleman and T. L. Liau. A Computer Readability Formula Designed for Machine Scoring. Journal of Applied Psychology, 60(2):283-284, 1975. Google Scholar
  10. J. A. Conlin. Getting around: making fast and frugal navigation decisions. Progress in Brain Research, 174:109-117, 2009. Google Scholar
  11. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269-271, 1959. Google Scholar
  12. S. L. Epstein. For The Right Reasons: The FORR Architecture For Learning In A Skill Domain. Cognitive Science, 18(3):479-511, 1994. Google Scholar
  13. S. L. Epstein, A. Aroor, M. Evanusa, E. I. Sklar, and S. Parsons. Learning Spatial Models for Navigation. In Proceedings of the 12th International Conference on Spatial Information Theory - Volume 9368, COSIT 2015, pages 403-425. Springer-Verlag New York, Inc., 2015. Google Scholar
  14. P. Foo, W. H. Warren, A. Duchon, and M. J. Tarr. Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2):195-215, 2005. Google Scholar
  15. M. Fox, D. Long, and D. Magazzeni. Explainable Planning. In IJCAI-17 Workshop on Explainable AI (XAI), 2017. Google Scholar
  16. C. R. Gallistel. The organization of learning. The MIT Press, 1990. Google Scholar
  17. R. G. Golledge. Human Wayfinding and Cognitive Maps. In Wayfinding Behavior: Cognitive mapping and other spatial processes, pages 5-45. Hopkins University Press, 1999. Google Scholar
  18. T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser. Microstructure of a spatial map in the entorhinal cortex. Nature, 436:801-806, 2005. Google Scholar
  19. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2nd edition, 2009. Google Scholar
  20. S. H. Huang, D. Held, P. Abbeel, and A. D. Dragan. Enabling robots to communicate their objectives. Autonomous Robots, 43(2):309-326, 2019. Google Scholar
  21. R. Korpan, S. L. Epstein, A. Aroor, and G. Dekel. WHY: Natural Explanations from a Robot Navigator. In AAAI Fall Symposium on Natural Communication for Human-Robot Collaboration, 2017. Google Scholar
  22. I. Kostavelis and A. Gasteratos. Semantic mapping for mobile robotics tasks: A survey. Robotics and Autonomous Systems, 66:86-103, 2015. Google Scholar
  23. B. Kuipers. The spatial semantic hierarchy. Artificial intelligence, 119(1-2):191-233, 2000. Google Scholar
  24. T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W. K. Wong. Too Much, Too Little, or Just Right? Ways Explanations Impact End Users' Mental Models. In IEEE Symposium on Visual Languages and Human-Centric Computing, pages 3-10. IEEE, 2013. Google Scholar
  25. C. Landsiedel, V. Rieser, M. Walter, and D. Wollherr. A Review of Spatial Reasoning and Interaction for Real-World Robotics. Advanced Robotics, 31(5):222-242, 2017. Google Scholar
  26. B. F. Malle. How People Explain Behavior: A New Theoretical Framework. Personality and Social Psychology Review, 3(1):23-48, 1999. Google Scholar
  27. R. Markkanen and H. Schröder. Hedging and Discourse, volume 24 of Research in Text Theory. Walter de Gruyter, 1997. Google Scholar
  28. T. P. McNamara. Mental representations of spatial relations. Cognitive psychology, 18(1):87-121, 1986. Google Scholar
  29. T. Miller. Explanation in Artificial Intelligence: Insights from the Social Sciences. Artificial Intelligence, 2018. Google Scholar
  30. M. Montemerlo and S. Thrun. FastSLAM 2.0. FastSLAM: A scalable method for the simultaneous localization and mapping problem in robotics, pages 63-90, 2007. Google Scholar
  31. J. Oh, T. M. Howard, M. R. Walter, D. Barber, M. Zhu, S. Park, A. Suppe, L. Navarro-Serment, F. Duvallet, A. Boularias, et al. Integrated Intelligence for Human-Robot Teams. In International Symposium on Experimental Robotics, pages 309-322. Springer, 2016. Google Scholar
  32. V. Perera, S. P. Selveraj, S. Rosenthal, and M. Veloso. Dynamic Generation and Refinement of Robot Verbalization. In 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 212-218. IEEE, 2016. Google Scholar
  33. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS: An Open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, volume 3, page 5. IEEE, 2009. Google Scholar
  34. S. Rosenthal, S. P. Selvaraj, and M. Veloso. Verbalization: Narration of Autonomous Mobile Robot Experience. In Proceedings of the International Joint Conference on Artificial Intelligence, volume 16, pages 862-868, 2016. Google Scholar
  35. R. Scalise, S. Rosenthal, and S. Srinivasa. Natural Language Explanations in Human-Collaborative Systems. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pages 377-378. ACM, 2017. Google Scholar
  36. H. J. Spiers and E. A. Maguire. The dynamic nature of cognition during wayfinding. Journal of Environmental Psychology, 28(3):232-249, 2008. Google Scholar
  37. S. Thrun. Finding landmarks for mobile robot navigation. In Proc. of the IEEE International Conference on Robotics and Automation, volume 2, pages 958-963. IEEE, 1998. Google Scholar
  38. S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71, 1998. Google Scholar
  39. E. C. Tolman. Cognitive maps in rats and men. Psychological Review, 55(4):189-208, 1948. Google Scholar
  40. B. Tversky. Cognitive maps, cognitive collages, and spatial mental models. In European Conference on Spatial Information Theory, pages 14-24. Springer, 1993. Google Scholar
  41. W. H. Warren, D. B. Rothman, B. H. Schnapp, and J. D. Ericson. Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166:152-163, 2017. Google Scholar
  42. S. M. Weisberg and N. S. Newcombe. How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5):768-785, 2016. Google Scholar
  43. H. Zender, O. M. Mozos, P. Jensfelt, G. Kruijff, and W. Burgard. Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems, 56(6):493-502, 2008. Google Scholar
  44. B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa. Planning-based prediction for pedestrians. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3931-3936. IEEE, 2009. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail