pdf-format: |
|
@InProceedings{jonietz_et_al:LIPIcs:2019:11119, author = {David Jonietz and Michael Kopp}, title = {{Towards Modeling Geographical Processes with Generative Adversarial Networks (GANs) (Short Paper)}}, booktitle = {14th International Conference on Spatial Information Theory (COSIT 2019)}, pages = {27:1--27:9}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-115-3}, ISSN = {1868-8969}, year = {2019}, volume = {142}, editor = {Sabine Timpf and Christoph Schlieder and Markus Kattenbeck and Bernd Ludwig and Kathleen Stewart}, publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik}, address = {Dagstuhl, Germany}, URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11119}, URN = {urn:nbn:de:0030-drops-111193}, doi = {10.4230/LIPIcs.COSIT.2019.27}, annote = {Keywords: GAN, generative modeling, deep learning, geosimulation, game of life} }
Keywords: | GAN, generative modeling, deep learning, geosimulation, game of life | |
Seminar: | 14th International Conference on Spatial Information Theory (COSIT 2019) | |
Issue date: | 2019 | |
Date of publication: | 03.09.2019 |