LIPIcs.APPROX-RANDOM.2019.50.pdf
- Filesize: 0.52 MB
- 20 pages
In this work, using methods from high dimensional expansion, we show that the property of k-direct-sum is testable for odd values of k . Previous work of [Kaufman and Lubotzky, 2014] could inherently deal only with the case that k is even, using a reduction to linearity testing. Interestingly, our work is the first to combine the topological notion of high dimensional expansion (called co-systolic expansion) with the combinatorial/spectral notion of high dimensional expansion (called colorful expansion) to obtain the result. The classical k-direct-sum problem applies to the complete complex; Namely it considers a function defined over all k-subsets of some n sized universe. Our result here applies to any collection of k-subsets of an n-universe, assuming this collection of subsets forms a high dimensional expander.
Feedback for Dagstuhl Publishing