Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

Authors Yoichi Iwata, Yusuke Kobayashi



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2019.22.pdf
  • Filesize: 0.49 MB
  • 11 pages

Document Identifiers

Author Details

Yoichi Iwata
  • National Institute of Informatics, Tokyo, Japan
Yusuke Kobayashi
  • Kyoto University, Kyoto, Japan

Acknowledgements

We would like to thank Yixin Cao for valuable discussions and thank organizers of PACE challenge 2016 for motivating us to study FVS.

Cite As Get BibTex

Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of Highest-Degree Branching for Feedback Vertex Set. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 22:1-22:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.IPEC.2019.22

Abstract

Recent empirical evaluations of exact algorithms for Feedback Vertex Set have demonstrated the efficiency of a highest-degree branching algorithm with a degree-based pruning heuristic. In this paper, we prove that this empirically fast algorithm runs in O(3.460^k n) time, where k is the solution size. This improves the previous best O(3.619^k n)-time deterministic algorithm obtained by Kociumaka and Pilipczuk (Inf. Process. Lett., 2014).

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Feedback Vertex Set
  • Branch and bound
  • Measure and conquer

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized Algorithms for the Loop Cutset Problem. J. Artif. Intell. Res., 12:219-234, 2000. URL: https://doi.org/10.1613/jair.638.
  2. Hans L. Bodlaender. On Disjoint Cycles. Int. J. Found. Comput. Sci., 5(1):59-68, 1994. URL: https://doi.org/10.1142/S0129054194000049.
  3. Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac, and Frances A. Rosamond. The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel. In IWPEC 2006, pages 192-202, 2006. URL: https://doi.org/10.1007/11847250_18.
  4. Yixin Cao. A Naive Algorithm for Feedback Vertex Set. In SOSA 2018, pages 1:1-1:9, 2018. URL: https://doi.org/10.4230/OASIcs.SOSA.2018.1.
  5. Yixin Cao, Jianer Chen, and Yang Liu. On Feedback Vertex Set: New Measure and New Structures. Algorithmica, 73(1):63-86, 2015. URL: https://doi.org/10.1007/s00453-014-9904-6.
  6. Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188-1198, 2008. URL: https://doi.org/10.1016/j.jcss.2008.05.002.
  7. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. In FOCS 2011, pages 150-159, 2011. URL: https://doi.org/10.1109/FOCS.2011.23.
  8. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut parameterized above lower bounds. TOCT, 5(1):3:1-3:11, 2013. URL: https://doi.org/10.1145/2462896.2462899.
  9. Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and Frances A. Rosamond. The First Parameterized Algorithms and Computational Experiments Challenge. In IPEC 2016, pages 30:1-30:9, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.30.
  10. Rodney G. Downey and Michael R. Fellows. Fixed Parameter Tractability and Completeness. In Complexity Theory: Current Research, pages 191-225, 1992. Google Scholar
  11. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  12. Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009. URL: https://doi.org/10.1145/1552285.1552286.
  13. Serge Gaspers. Exponential Time Algorithms - Structures, Measures, and Bounds. VDM, 2010. Google Scholar
  14. Kensuke Imanishi and Yoichi Iwata. Feedback Vertex Set solver, 2016. Entry to PACE challenge 2016. URL: http://github.com/wata-orz/fvs.
  15. Yoichi Iwata. Linear-Time Kernelization for Feedback Vertex Set. In ICALP 2017, pages 68:1-68:14, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.68.
  16. Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching and FPT Algorithms. SIAM J. Comput., 45(4):1377-1411, 2016. URL: https://doi.org/10.1137/140962838.
  17. Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0 All CSPs, Half-Integral A-Path Packing, and Linear-Time FPT Algorithms. In FOCS 2018, pages 462-473, 2018. URL: https://doi.org/10.1109/FOCS.2018.00051.
  18. Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations 1972, pages 85-103, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  19. Krzysztof Kiljan and Marcin Pilipczuk. Experimental Evaluation of Parameterized Algorithms for Feedback Vertex Set. In SEA 2018, pages 12:1-12:12, 2018. URL: https://doi.org/10.4230/LIPIcs.SEA.2018.12.
  20. Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic Feedback Vertex Set. Inf. Process. Lett., 114(10):556-560, 2014. URL: https://doi.org/10.1016/j.ipl.2014.05.001.
  21. Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Faster Parameterized Algorithms Using Linear Programming. ACM Trans. Algorithms, 11(2):15:1-15:31, 2014. URL: https://doi.org/10.1145/2566616.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail