Blocking Dominating Sets for H-Free Graphs via Edge Contractions

Authors Esther Galby, Paloma T. Lima, Bernard Ries



PDF
Thumbnail PDF

File

LIPIcs.ISAAC.2019.21.pdf
  • Filesize: 0.5 MB
  • 14 pages

Document Identifiers

Author Details

Esther Galby
  • Department of Informatics, University of Fribourg, Fribourg, Switzerland
Paloma T. Lima
  • Department of Informatics, University of Bergen, Bergen, Norway
Bernard Ries
  • Department of Informatics, University of Fribourg, Fribourg, Switzerland

Cite As Get BibTex

Esther Galby, Paloma T. Lima, and Bernard Ries. Blocking Dominating Sets for H-Free Graphs via Edge Contractions. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 21:1-21:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) https://doi.org/10.4230/LIPIcs.ISAAC.2019.21

Abstract

In this paper, we consider the following problem: given a connected graph G, can we reduce the domination number of G by one by using only one edge contraction? We show that the problem is NP-hard when restricted to {P_6,P_4+P_2}-free graphs and that it is coNP-hard when restricted to subcubic claw-free graphs and 2P_3-free graphs. As a consequence, we are able to establish a complexity dichotomy for the problem on H-free graphs when H is connected.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
Keywords
  • domination number
  • blocker problem
  • H-free graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Cristina Bazgan, Sonia Toubaline, and Zsolt Tuza. The most vital nodes with respect to independent set and vertex cover. Discrete Applied Mathematics, 159:1933-1946, October 2011. URL: https://doi.org/10.1016/j.dam.2011.06.023.
  2. Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten. Critical edges for the assignment problem: Complexity and exact resolution. Operations Research Letters, 41:685-689, November 2013. URL: https://doi.org/10.1016/j.orl.2013.10.001.
  3. Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard Ries. Blockers and Transversals in some subclasses of bipartite graphs: when caterpillars are dancing on a grid. Discrete Mathematics, 310:132-146, January 2010. URL: https://doi.org/10.1016/j.disc.2009.08.009.
  4. Cédric Bentz, Costa Marie-Christine, Dominique de Werra, Christophe Picouleau, and Bernard Ries. Weighted Transversals and Blockers for Some Optimization Problems in Graphs, pages 203-222. Progress in Combinatorial Optimization. ISTE-WILEY, 2012. Google Scholar
  5. Marie-Christine Costa, Dominique de Werra, and Christophe Picouleau. Minimum d-blockers and d-transversals in graphs. Journal of Combinatorial Optimization, 22(4):857-872, 2011. URL: https://doi.org/10.1007/s10878-010-9334-6.
  6. Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidelberg; New York, fourth edition, 2010. Google Scholar
  7. Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction Blockers for Graphs with Forbidden Induced Paths. In Algorithms and Complexity, pages 194-207. Springer International Publishing, 2015. Google Scholar
  8. Öznur Yaşar Diner, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Contraction and deletion blockers for perfect graphs and H-free graphs. Theoretical Computer Science, 746:49-72, 2018. URL: https://doi.org/10.1016/j.tcs.2018.06.023.
  9. Esther Galby, Paloma T. Lima, and Bernard Ries. Reducing the domination number of graphs via edge contractions. In Mathematical Foundations of Computer Science (MFCS) 2019 (to appear), 2019. Google Scholar
  10. Jia Huang and Jun-Ming Xu. Domination and Total Domination Contraction Numbers of Graphs. Ars Combinatoria, 94, January 2010. Google Scholar
  11. Chaya Keller and Micha A Perles. Blockers for simple Hamiltonian paths in convex geometric graphs of even order. Discrete & Computational Geometry, 60(1):1-8, 2018. Google Scholar
  12. Chaya Keller, Micha A Perles, Eduardo Rivera-Campo, and Virginia Urrutia-Galicia. Blockers for noncrossing spanning trees in complete geometric graphs. In Thirty Essays on Geometric Graph Theory, pages 383-397. Springer, 2013. Google Scholar
  13. Foad Mahdavi Pajouh, Vladimir Boginski, and Eduardo Pasiliao. Minimum Vertex Blocker Clique Problem. Networks, 64:48-64, August 2014. URL: https://doi.org/10.1002/net.21556.
  14. C. Moore and J. M. Robson. Hard Tiling Problems with Simple Tiles. Discrete Computational Geometry, 26(4):573-590, 2001. URL: https://doi.org/10.1007/s00454-001-0047-6.
  15. Farzaneh Nasirian, Foad Mahdavi Pajouh, and Josephine Namayanja. Exact algorithms for the minimum cost vertex blocker clique problem. Computers & Operations Research, 103:296-309, 2019. Google Scholar
  16. Foad Mahdavi Pajouh, Jose L. Walteros, Vladimir Boginski, and Eduardo L. Pasiliao. Minimum edge blocker dominating set problem. European Journal of Operational Research, 247(1):16-26, 2015. Google Scholar
  17. Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions. In ISCO 2016, volume 9849 of LNCS, pages 38-49, 2016. URL: https://doi.org/10.1007/978-3-319-45587-7_4.
  18. Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Blocking Independent Sets for H-Free Graphs via Edge Contractions and Vertex Deletions. In TAMC 2017, volume 10185 of LNCS, pages 470-483, 2017. URL: https://doi.org/10.1007/978-3-319-55911-7_34.
  19. Daniël Paulusma, Christophe Picouleau, and Bernard Ries. Critical vertices and edges in H-free graphs. Discrete Applied Mathematics, 257:361-367, 2019. URL: https://doi.org/10.1016/j.dam.2018.08.016.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail