LIPIcs.CPM.2020.14.pdf
- Filesize: 0.96 MB
- 14 pages
Given two indeterminate equal-length strings p and t with a set of characters per position in both strings, we obtain a determinate string p_w from p and a determinate string t_w from t by choosing one character per position. Then, we say that p and t match when p_w and t_w match for some choice of the characters. While the most standard notion of a match for determinate strings is that they are simply identical, in certain applications it is more appropriate to use other definitions, with the prime examples being parameterized matching, order-preserving matching, and the recently introduced Cartesian tree matching. We provide a systematic study of the complexity of string matching for indeterminate equal-length strings, for different notions of matching. We use n to denote the length of both strings, and r to be an upper-bound on the number of uncertain characters per position. First, we provide the first polynomial time algorithm for the Cartesian tree version that runs in deterministic 𝒪(nlog² n) and expected 𝒪(nlog nlog log n) time using 𝒪(nlog n) space, for constant r. Second, we establish NP-hardness of the order-preserving version for r=2, thus solving a question explicitly stated by Henriques et al. [CPM 2018], who showed hardness for r=3. Third, we establish NP-hardness of the parameterized version for r=2. As both parameterized and order-preserving indeterminate matching reduce to the standard determinate matching for r=1, this provides a complete classification for these three variants.
Feedback for Dagstuhl Publishing