LIPIcs.CPM.2020.15.pdf
- Filesize: 0.53 MB
- 15 pages
We revisit the k-mismatch problem in the streaming model on a pattern of length m and a streaming text of length n, both over a size-σ alphabet. The current state-of-the-art algorithm for the streaming k-mismatch problem, by Clifford et al. [SODA 2019], uses Õ(k) space and Õ(√k) worst-case time per character. The space complexity is known to be (unconditionally) optimal, and the worst-case time per character matches a conditional lower bound. However, there is a gap between the total time cost of the algorithm, which is Õ(n√k), and the fastest known offline algorithm, which costs Õ(n + min(nk/√m, σn)) time. Moreover, it is not known whether improvements over the Õ(n√k) total time are possible when using more than O(k) space. We address these gaps by designing a randomized streaming algorithm for the k-mismatch problem that, given an integer parameter k≤s≤m, uses Õ(s) space and costs Õ(n+min(nk²/m, nk/√s, σnm/s)) total time. For s=m, the total runtime becomes Õ(n + min(nk/√m, σn)), which matches the time cost of the fastest offline algorithm. Moreover, the worst-case time cost per character is still Õ(√k).
Feedback for Dagstuhl Publishing